Skip to content

Nms

non_max_suppression_fast(boxes, overlapThresh)

Applies non-maximum suppression to bounding boxes.

Parameters:

Name Type Description Default
boxes ndarray

Array of bounding boxes with confidence scores.

required
overlapThresh float

Overlap threshold for suppression.

required

Returns:

Name Type Description
list

List of bounding boxes after non-maximum suppression.

Source code in inference/core/nms.py
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
def non_max_suppression_fast(boxes, overlapThresh):
    """Applies non-maximum suppression to bounding boxes.

    Args:
        boxes (np.ndarray): Array of bounding boxes with confidence scores.
        overlapThresh (float): Overlap threshold for suppression.

    Returns:
        list: List of bounding boxes after non-maximum suppression.
    """
    # if there are no boxes, return an empty list
    if len(boxes) == 0:
        return []
    # if the bounding boxes integers, convert them to floats --
    # this is important since we'll be doing a bunch of divisions
    if boxes.dtype.kind == "i":
        boxes = boxes.astype("float")
    # initialize the list of picked indexes
    pick = []
    # grab the coordinates of the bounding boxes
    x1 = boxes[:, 0]
    y1 = boxes[:, 1]
    x2 = boxes[:, 2]
    y2 = boxes[:, 3]
    conf = boxes[:, 4]
    # compute the area of the bounding boxes and sort the bounding
    # boxes by the bottom-right y-coordinate of the bounding box
    area = (x2 - x1 + 1) * (y2 - y1 + 1)
    idxs = np.argsort(conf)
    # keep looping while some indexes still remain in the indexes
    # list
    while len(idxs) > 0:
        # grab the last index in the indexes list and add the
        # index value to the list of picked indexes
        last = len(idxs) - 1
        i = idxs[last]
        pick.append(i)
        # find the largest (x, y) coordinates for the start of
        # the bounding box and the smallest (x, y) coordinates
        # for the end of the bounding box
        xx1 = np.maximum(x1[i], x1[idxs[:last]])
        yy1 = np.maximum(y1[i], y1[idxs[:last]])
        xx2 = np.minimum(x2[i], x2[idxs[:last]])
        yy2 = np.minimum(y2[i], y2[idxs[:last]])
        # compute the width and height of the bounding box
        w = np.maximum(0, xx2 - xx1 + 1)
        h = np.maximum(0, yy2 - yy1 + 1)
        # compute the ratio of overlap
        overlap = (w * h) / area[idxs[:last]]
        # delete all indexes from the index list that have
        idxs = np.delete(
            idxs, np.concatenate(([last], np.where(overlap > overlapThresh)[0]))
        )
    # return only the bounding boxes that were picked using the
    # integer data type
    return boxes[pick].astype("float")

w_np_non_max_suppression(prediction, conf_thresh=0.25, iou_thresh=0.45, class_agnostic=False, max_detections=300, max_candidate_detections=3000, timeout_seconds=None, num_masks=0, box_format='xywh')

Applies non-maximum suppression to predictions.

Parameters:

Name Type Description Default
prediction ndarray

Array of predictions. Format for single prediction is [bbox x 4, max_class_confidence, (confidence) x num_of_classes, additional_element x num_masks]

required
conf_thresh float

Confidence threshold. Defaults to 0.25.

0.25
iou_thresh float

IOU threshold. Defaults to 0.45.

0.45
class_agnostic bool

Whether to ignore class labels. Defaults to False.

False
max_detections int

Maximum number of detections. Defaults to 300.

300
max_candidate_detections int

Maximum number of candidate detections. Defaults to 3000.

3000
timeout_seconds Optional[int]

Timeout in seconds. Defaults to None.

None
num_masks int

Number of masks. Defaults to 0.

0
box_format str

Format of bounding boxes. Either 'xywh' or 'xyxy'. Defaults to 'xywh'.

'xywh'

Returns:

Name Type Description
list

List of filtered predictions after non-maximum suppression. Format of a single result is: [bbox x 4, max_class_confidence, max_class_confidence, id_of_class_with_max_confidence, additional_element x num_masks]

Source code in inference/core/nms.py
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def w_np_non_max_suppression(
    prediction,
    conf_thresh: float = 0.25,
    iou_thresh: float = 0.45,
    class_agnostic: bool = False,
    max_detections: int = 300,
    max_candidate_detections: int = 3000,
    timeout_seconds: Optional[int] = None,
    num_masks: int = 0,
    box_format: str = "xywh",
):
    """Applies non-maximum suppression to predictions.

    Args:
        prediction (np.ndarray): Array of predictions. Format for single prediction is
            [bbox x 4, max_class_confidence, (confidence) x num_of_classes, additional_element x num_masks]
        conf_thresh (float, optional): Confidence threshold. Defaults to 0.25.
        iou_thresh (float, optional): IOU threshold. Defaults to 0.45.
        class_agnostic (bool, optional): Whether to ignore class labels. Defaults to False.
        max_detections (int, optional): Maximum number of detections. Defaults to 300.
        max_candidate_detections (int, optional): Maximum number of candidate detections. Defaults to 3000.
        timeout_seconds (Optional[int], optional): Timeout in seconds. Defaults to None.
        num_masks (int, optional): Number of masks. Defaults to 0.
        box_format (str, optional): Format of bounding boxes. Either 'xywh' or 'xyxy'. Defaults to 'xywh'.

    Returns:
        list: List of filtered predictions after non-maximum suppression. Format of a single result is:
            [bbox x 4, max_class_confidence, max_class_confidence, id_of_class_with_max_confidence,
            additional_element x num_masks]
    """
    num_classes = prediction.shape[2] - 5 - num_masks

    np_box_corner = np.zeros(prediction.shape)
    if box_format == "xywh":
        np_box_corner[:, :, 0] = prediction[:, :, 0] - prediction[:, :, 2] / 2
        np_box_corner[:, :, 1] = prediction[:, :, 1] - prediction[:, :, 3] / 2
        np_box_corner[:, :, 2] = prediction[:, :, 0] + prediction[:, :, 2] / 2
        np_box_corner[:, :, 3] = prediction[:, :, 1] + prediction[:, :, 3] / 2
        prediction[:, :, :4] = np_box_corner[:, :, :4]
    elif box_format == "xyxy":
        pass
    else:
        raise ValueError(
            "box_format must be either 'xywh' or 'xyxy', got {}".format(box_format)
        )

    batch_predictions = []
    for np_image_i, np_image_pred in enumerate(prediction):
        filtered_predictions = []
        np_conf_mask = np_image_pred[:, 4] >= conf_thresh

        np_image_pred = np_image_pred[np_conf_mask]
        cls_confs = np_image_pred[:, 5 : num_classes + 5]
        if (
            np_image_pred.shape[0] == 0
            or np_image_pred.shape[1] == 0
            or cls_confs.shape[1] == 0
        ):
            batch_predictions.append(filtered_predictions)
            continue

        np_class_conf = np.max(cls_confs, 1)
        np_class_pred = np.argmax(np_image_pred[:, 5 : num_classes + 5], 1)
        np_class_conf = np.expand_dims(np_class_conf, axis=1)
        np_class_pred = np.expand_dims(np_class_pred, axis=1)
        np_mask_pred = np_image_pred[:, 5 + num_classes :]
        np_detections = np.append(
            np.append(
                np.append(np_image_pred[:, :5], np_class_conf, axis=1),
                np_class_pred,
                axis=1,
            ),
            np_mask_pred,
            axis=1,
        )

        np_unique_labels = np.unique(np_detections[:, 6])

        if class_agnostic:
            np_detections_class = sorted(
                np_detections, key=lambda row: row[4], reverse=True
            )
            filtered_predictions.extend(
                non_max_suppression_fast(np.array(np_detections_class), iou_thresh)
            )
        else:
            for c in np_unique_labels:
                np_detections_class = np_detections[np_detections[:, 6] == c]
                np_detections_class = sorted(
                    np_detections_class, key=lambda row: row[4], reverse=True
                )
                filtered_predictions.extend(
                    non_max_suppression_fast(np.array(np_detections_class), iou_thresh)
                )
        filtered_predictions = sorted(
            filtered_predictions, key=lambda row: row[4], reverse=True
        )
        batch_predictions.append(filtered_predictions[:max_detections])
    return batch_predictions