Tokenizer
CLIP tokenizer
Copied from https://github.com/openai/CLIP. Originally MIT License, Copyright (c) 2021 OpenAI.
SimpleTokenizer
¶
Bases: object
Source code in inference/models/perception_encoder/vision_encoder/tokenizer.py
133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
__call__(texts, context_length=None)
¶
Returns the tokenized representation of given input string(s)
Parameters¶
texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length
Returns¶
A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length]
Source code in inference/models/perception_encoder/vision_encoder/tokenizer.py
234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 |
|
bytes_to_unicode()
cached
¶
Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on.
Source code in inference/models/perception_encoder/vision_encoder/tokenizer.py
32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 |
|
canonicalize_text(text, *, keep_punctuation_exact_string=None)
¶
Returns canonicalized text
(lowercase and punctuation removed).
From: https://github.com/google-research/big_vision/blob/53f18caf27a9419231bbf08d3388b07671616d3d/big_vision/evaluators/proj/image_text/prompt_engineering.py#L94
Parameters:
Name | Type | Description | Default |
---|---|---|---|
text
|
string to be canonicalized. |
required | |
keep_punctuation_exact_string
|
If provided, then this exact string kept. For example providing '{}' will keep any occurrences of '{}' (but will still remove '{' and '}' that appear separately). |
None
|
Source code in inference/models/perception_encoder/vision_encoder/tokenizer.py
109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
|
get_pairs(word)
¶
Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings).
Source code in inference/models/perception_encoder/vision_encoder/tokenizer.py
59 60 61 62 63 64 65 66 67 68 |
|
get_reduction_mask_fn(type)
¶
Choose strategy for dropping (masking) tokens to achieve target context length
Source code in inference/models/perception_encoder/vision_encoder/tokenizer.py
332 333 334 335 336 337 338 339 340 341 342 |
|