Skip to content

Yolact instance segmentation

YOLACT

Bases: OnnxRoboflowInferenceModel

Roboflow ONNX Object detection model (Implements an object detection specific infer method)

Source code in inference/models/yolact/yolact_instance_segmentation.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
class YOLACT(OnnxRoboflowInferenceModel):
    """Roboflow ONNX Object detection model (Implements an object detection specific infer method)"""

    task_type = "instance-segmentation"

    @property
    def weights_file(self) -> str:
        """Gets the weights file.

        Returns:
            str: Path to the weights file.
        """
        return "weights.onnx"

    def infer(
        self,
        image: Any,
        class_agnostic_nms: bool = False,
        confidence: float = 0.5,
        iou_threshold: float = 0.5,
        max_candidates: int = 3000,
        max_detections: int = 300,
        return_image_dims: bool = False,
        **kwargs,
    ) -> List[List[dict]]:
        """
        Performs instance segmentation inference on a given image, post-processes the results,
        and returns the segmented instances as dictionaries containing their properties.

        Args:
            image (Any): The image or list of images to segment.
                - can be a BGR numpy array, filepath, InferenceRequestImage, PIL Image, byte-string, etc.
            class_agnostic_nms (bool, optional): Whether to perform class-agnostic non-max suppression. Defaults to False.
            confidence (float, optional): Confidence threshold for filtering weak detections. Defaults to 0.5.
            iou_threshold (float, optional): Intersection-over-union threshold for non-max suppression. Defaults to 0.5.
            max_candidates (int, optional): Maximum number of candidate detections to consider. Defaults to 3000.
            max_detections (int, optional): Maximum number of detections to return after non-max suppression. Defaults to 300.
            return_image_dims (bool, optional): Whether to return the dimensions of the input image(s). Defaults to False.
            **kwargs: Additional keyword arguments.

        Returns:
            List[List[dict]]: Each list contains dictionaries of segmented instances for a given image. Each dictionary contains:
                - x, y: Center coordinates of the instance.
                - width, height: Width and height of the bounding box around the instance.
                - class: Name of the detected class.
                - confidence: Confidence score of the detection.
                - points: List of points describing the segmented mask's boundary.
                - class_id: ID corresponding to the detected class.
            If `return_image_dims` is True, the function returns a tuple where the first element is the list of detections and the
            second element is the list of image dimensions.

        Notes:
            - The function supports processing multiple images in a batch.
            - If an input list of images is provided, the function returns a list of lists,
              where each inner list corresponds to the detections for a specific image.
            - The function internally uses an ONNX model for inference.
        """
        return super().infer(
            image,
            class_agnostic_nms=class_agnostic_nms,
            confidence=confidence,
            iou_threshold=iou_threshold,
            max_candidates=max_candidates,
            max_detections=max_detections,
            return_image_dims=return_image_dims,
            **kwargs,
        )

    def preprocess(
        self, image: Any, **kwargs
    ) -> Tuple[np.ndarray, PreprocessReturnMetadata]:
        if isinstance(image, list):
            imgs_with_dims = [self.preproc_image(i) for i in image]
            imgs, img_dims = zip(*imgs_with_dims)
            img_in = np.concatenate(imgs, axis=0)
            unwrap = False
        else:
            img_in, img_dims = self.preproc_image(image)
            img_dims = [img_dims]
            unwrap = True

        # IN BGR order (for some reason)
        mean = (103.94, 116.78, 123.68)
        std = (57.38, 57.12, 58.40)

        img_in = img_in.astype(np.float32)

        # Our channels are RGB, so apply mean and std accordingly
        img_in[:, 0, :, :] = (img_in[:, 0, :, :] - mean[2]) / std[2]
        img_in[:, 1, :, :] = (img_in[:, 1, :, :] - mean[1]) / std[1]
        img_in[:, 2, :, :] = (img_in[:, 2, :, :] - mean[0]) / std[0]

        return img_in, PreprocessReturnMetadata(
            {
                "img_dims": img_dims,
                "im_shape": img_in.shape,
            }
        )

    def predict(
        self, img_in: np.ndarray, **kwargs
    ) -> Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray]:
        return self.onnx_session.run(None, {self.input_name: img_in})

    def postprocess(
        self,
        predictions: Tuple[np.ndarray, np.ndarray, np.ndarray, np.ndarray, np.ndarray],
        preprocess_return_metadata: PreprocessReturnMetadata,
        **kwargs,
    ) -> List[InstanceSegmentationInferenceResponse]:
        loc_data = np.float32(predictions[0])
        conf_data = np.float32(predictions[1])
        mask_data = np.float32(predictions[2])
        prior_data = np.float32(predictions[3])
        proto_data = np.float32(predictions[4])

        batch_size = loc_data.shape[0]
        num_priors = prior_data.shape[0]

        boxes = np.zeros((batch_size, num_priors, 4))
        for batch_idx in range(batch_size):
            boxes[batch_idx, :, :] = self.decode_predicted_bboxes(
                loc_data[batch_idx], prior_data
            )

        conf_preds = np.reshape(
            conf_data, (batch_size, num_priors, self.num_classes + 1)
        )
        class_confs = conf_preds[:, :, 1:]  # remove background class
        box_confs = np.expand_dims(
            np.max(class_confs, axis=2), 2
        )  # get max conf for each box

        predictions = np.concatenate((boxes, box_confs, class_confs, mask_data), axis=2)

        img_in_shape = preprocess_return_metadata["im_shape"]
        predictions[:, :, 0] *= img_in_shape[2]
        predictions[:, :, 1] *= img_in_shape[3]
        predictions[:, :, 2] *= img_in_shape[2]
        predictions[:, :, 3] *= img_in_shape[3]
        predictions = w_np_non_max_suppression(
            predictions,
            conf_thresh=kwargs["confidence"],
            iou_thresh=kwargs["iou_threshold"],
            class_agnostic=kwargs["class_agnostic_nms"],
            max_detections=kwargs["max_detections"],
            max_candidate_detections=kwargs["max_candidates"],
            num_masks=32,
            box_format="xyxy",
        )
        predictions = np.array(predictions)
        batch_preds = []
        if predictions.shape != (1, 0):
            for batch_idx, img_dim in enumerate(preprocess_return_metadata["img_dims"]):
                boxes = predictions[batch_idx, :, :4]
                scores = predictions[batch_idx, :, 4]
                classes = predictions[batch_idx, :, 6]
                masks = predictions[batch_idx, :, 7:]
                proto = proto_data[batch_idx]
                decoded_masks = self.decode_masks(boxes, masks, proto, img_in_shape[2:])
                polys = masks2poly(decoded_masks)
                infer_shape = (self.img_size_w, self.img_size_h)
                boxes = post_process_bboxes(
                    [boxes], infer_shape, [img_dim], self.preproc, self.resize_method
                )[0]
                polys = post_process_polygons(
                    img_in_shape[2:],
                    polys,
                    img_dim,
                    self.preproc,
                    resize_method=self.resize_method,
                )
                preds = []
                for box, poly, score, cls in zip(boxes, polys, scores, classes):
                    confidence = float(score)
                    class_name = self.class_names[int(cls)]
                    points = [{"x": round(x, 1), "y": round(y, 1)} for (x, y) in poly]
                    pred = {
                        "x": round((box[2] + box[0]) / 2, 1),
                        "y": round((box[3] + box[1]) / 2, 1),
                        "width": int(box[2] - box[0]),
                        "height": int(box[3] - box[1]),
                        "class": class_name,
                        "confidence": round(confidence, 3),
                        "points": points,
                        "class_id": int(cls),
                    }
                    preds.append(pred)
                batch_preds.append(preds)
        else:
            batch_preds.append([])
        img_dims = preprocess_return_metadata["img_dims"]
        responses = self.make_response(batch_preds, img_dims, **kwargs)
        if kwargs["return_image_dims"]:
            return responses, preprocess_return_metadata["img_dims"]
        else:
            return responses

    def make_response(
        self,
        predictions: List[List[dict]],
        img_dims: List[Tuple[int, int]],
        class_filter: List[str] = None,
        **kwargs,
    ) -> List[InstanceSegmentationInferenceResponse]:
        """
        Constructs a list of InstanceSegmentationInferenceResponse objects based on the provided predictions
        and image dimensions, optionally filtering by class name.

        Args:
            predictions (List[List[dict]]): A list containing batch predictions, where each inner list contains
                dictionaries of segmented instances for a given image.
            img_dims (List[Tuple[int, int]]): List of tuples specifying the dimensions of each image in the format
                (height, width).
            class_filter (List[str], optional): A list of class names to filter the predictions by. If not provided,
                all predictions are included.

        Returns:
            List[InstanceSegmentationInferenceResponse]: A list of response objects, each containing the filtered
            predictions and corresponding image dimensions for a given image.

        Examples:
            >>> predictions = [[{"class_name": "cat", ...}, {"class_name": "dog", ...}], ...]
            >>> img_dims = [(300, 400), ...]
            >>> responses = make_response(predictions, img_dims, class_filter=["cat"])
            >>> len(responses[0].predictions)  # Only predictions with "cat" class are included
            1
        """
        responses = [
            InstanceSegmentationInferenceResponse(
                predictions=[
                    InstanceSegmentationPrediction(**p)
                    for p in batch_pred
                    if not class_filter or p["class_name"] in class_filter
                ],
                image=InferenceResponseImage(
                    width=img_dims[i][1], height=img_dims[i][0]
                ),
            )
            for i, batch_pred in enumerate(predictions)
        ]
        return responses

    def decode_masks(self, boxes, masks, proto, img_dim):
        """Decodes the masks from the given parameters.

        Args:
            boxes (np.array): Bounding boxes.
            masks (np.array): Masks.
            proto (np.array): Proto data.
            img_dim (tuple): Image dimensions.

        Returns:
            np.array: Decoded masks.
        """
        ret_mask = np.matmul(proto, np.transpose(masks))
        ret_mask = 1 / (1 + np.exp(-ret_mask))
        w, h, _ = ret_mask.shape
        gain = min(h / img_dim[0], w / img_dim[1])  # gain  = old / new
        pad = (w - img_dim[1] * gain) / 2, (h - img_dim[0] * gain) / 2  # wh padding
        top, left = int(pad[1]), int(pad[0])  # y, x
        bottom, right = int(h - pad[1]), int(w - pad[0])
        ret_mask = np.transpose(ret_mask, (2, 0, 1))
        ret_mask = ret_mask[:, top:bottom, left:right]
        if len(ret_mask.shape) == 2:
            ret_mask = np.expand_dims(ret_mask, axis=0)
        ret_mask = ret_mask.transpose((1, 2, 0))
        ret_mask = cv2.resize(ret_mask, img_dim, interpolation=cv2.INTER_LINEAR)
        if len(ret_mask.shape) == 2:
            ret_mask = np.expand_dims(ret_mask, axis=2)
        ret_mask = ret_mask.transpose((2, 0, 1))
        ret_mask = crop_mask(ret_mask, boxes)  # CHW
        ret_mask[ret_mask < 0.5] = 0

        return ret_mask

    def decode_predicted_bboxes(self, loc, priors):
        """Decode predicted bounding box coordinates using the scheme employed by Yolov2.

        Args:
            loc (np.array): The predicted bounding boxes of size [num_priors, 4].
            priors (np.array): The prior box coordinates with size [num_priors, 4].

        Returns:
            np.array: A tensor of decoded relative coordinates in point form with size [num_priors, 4].
        """

        variances = [0.1, 0.2]

        boxes = np.concatenate(
            [
                priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
                priors[:, 2:] * np.exp(loc[:, 2:] * variances[1]),
            ],
            1,
        )
        boxes[:, :2] -= boxes[:, 2:] / 2
        boxes[:, 2:] += boxes[:, :2]

        return boxes

weights_file property

Gets the weights file.

Returns:

Name Type Description
str str

Path to the weights file.

decode_masks(boxes, masks, proto, img_dim)

Decodes the masks from the given parameters.

Parameters:

Name Type Description Default
boxes array

Bounding boxes.

required
masks array

Masks.

required
proto array

Proto data.

required
img_dim tuple

Image dimensions.

required

Returns:

Type Description

np.array: Decoded masks.

Source code in inference/models/yolact/yolact_instance_segmentation.py
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
def decode_masks(self, boxes, masks, proto, img_dim):
    """Decodes the masks from the given parameters.

    Args:
        boxes (np.array): Bounding boxes.
        masks (np.array): Masks.
        proto (np.array): Proto data.
        img_dim (tuple): Image dimensions.

    Returns:
        np.array: Decoded masks.
    """
    ret_mask = np.matmul(proto, np.transpose(masks))
    ret_mask = 1 / (1 + np.exp(-ret_mask))
    w, h, _ = ret_mask.shape
    gain = min(h / img_dim[0], w / img_dim[1])  # gain  = old / new
    pad = (w - img_dim[1] * gain) / 2, (h - img_dim[0] * gain) / 2  # wh padding
    top, left = int(pad[1]), int(pad[0])  # y, x
    bottom, right = int(h - pad[1]), int(w - pad[0])
    ret_mask = np.transpose(ret_mask, (2, 0, 1))
    ret_mask = ret_mask[:, top:bottom, left:right]
    if len(ret_mask.shape) == 2:
        ret_mask = np.expand_dims(ret_mask, axis=0)
    ret_mask = ret_mask.transpose((1, 2, 0))
    ret_mask = cv2.resize(ret_mask, img_dim, interpolation=cv2.INTER_LINEAR)
    if len(ret_mask.shape) == 2:
        ret_mask = np.expand_dims(ret_mask, axis=2)
    ret_mask = ret_mask.transpose((2, 0, 1))
    ret_mask = crop_mask(ret_mask, boxes)  # CHW
    ret_mask[ret_mask < 0.5] = 0

    return ret_mask

decode_predicted_bboxes(loc, priors)

Decode predicted bounding box coordinates using the scheme employed by Yolov2.

Parameters:

Name Type Description Default
loc array

The predicted bounding boxes of size [num_priors, 4].

required
priors array

The prior box coordinates with size [num_priors, 4].

required

Returns:

Type Description

np.array: A tensor of decoded relative coordinates in point form with size [num_priors, 4].

Source code in inference/models/yolact/yolact_instance_segmentation.py
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
def decode_predicted_bboxes(self, loc, priors):
    """Decode predicted bounding box coordinates using the scheme employed by Yolov2.

    Args:
        loc (np.array): The predicted bounding boxes of size [num_priors, 4].
        priors (np.array): The prior box coordinates with size [num_priors, 4].

    Returns:
        np.array: A tensor of decoded relative coordinates in point form with size [num_priors, 4].
    """

    variances = [0.1, 0.2]

    boxes = np.concatenate(
        [
            priors[:, :2] + loc[:, :2] * variances[0] * priors[:, 2:],
            priors[:, 2:] * np.exp(loc[:, 2:] * variances[1]),
        ],
        1,
    )
    boxes[:, :2] -= boxes[:, 2:] / 2
    boxes[:, 2:] += boxes[:, :2]

    return boxes

infer(image, class_agnostic_nms=False, confidence=0.5, iou_threshold=0.5, max_candidates=3000, max_detections=300, return_image_dims=False, **kwargs)

Performs instance segmentation inference on a given image, post-processes the results, and returns the segmented instances as dictionaries containing their properties.

Parameters:

Name Type Description Default
image Any

The image or list of images to segment. - can be a BGR numpy array, filepath, InferenceRequestImage, PIL Image, byte-string, etc.

required
class_agnostic_nms bool

Whether to perform class-agnostic non-max suppression. Defaults to False.

False
confidence float

Confidence threshold for filtering weak detections. Defaults to 0.5.

0.5
iou_threshold float

Intersection-over-union threshold for non-max suppression. Defaults to 0.5.

0.5
max_candidates int

Maximum number of candidate detections to consider. Defaults to 3000.

3000
max_detections int

Maximum number of detections to return after non-max suppression. Defaults to 300.

300
return_image_dims bool

Whether to return the dimensions of the input image(s). Defaults to False.

False
**kwargs

Additional keyword arguments.

{}

Returns:

Type Description
List[List[dict]]

List[List[dict]]: Each list contains dictionaries of segmented instances for a given image. Each dictionary contains: - x, y: Center coordinates of the instance. - width, height: Width and height of the bounding box around the instance. - class: Name of the detected class. - confidence: Confidence score of the detection. - points: List of points describing the segmented mask's boundary. - class_id: ID corresponding to the detected class.

List[List[dict]]

If return_image_dims is True, the function returns a tuple where the first element is the list of detections and the

List[List[dict]]

second element is the list of image dimensions.

Notes
  • The function supports processing multiple images in a batch.
  • If an input list of images is provided, the function returns a list of lists, where each inner list corresponds to the detections for a specific image.
  • The function internally uses an ONNX model for inference.
Source code in inference/models/yolact/yolact_instance_segmentation.py
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
def infer(
    self,
    image: Any,
    class_agnostic_nms: bool = False,
    confidence: float = 0.5,
    iou_threshold: float = 0.5,
    max_candidates: int = 3000,
    max_detections: int = 300,
    return_image_dims: bool = False,
    **kwargs,
) -> List[List[dict]]:
    """
    Performs instance segmentation inference on a given image, post-processes the results,
    and returns the segmented instances as dictionaries containing their properties.

    Args:
        image (Any): The image or list of images to segment.
            - can be a BGR numpy array, filepath, InferenceRequestImage, PIL Image, byte-string, etc.
        class_agnostic_nms (bool, optional): Whether to perform class-agnostic non-max suppression. Defaults to False.
        confidence (float, optional): Confidence threshold for filtering weak detections. Defaults to 0.5.
        iou_threshold (float, optional): Intersection-over-union threshold for non-max suppression. Defaults to 0.5.
        max_candidates (int, optional): Maximum number of candidate detections to consider. Defaults to 3000.
        max_detections (int, optional): Maximum number of detections to return after non-max suppression. Defaults to 300.
        return_image_dims (bool, optional): Whether to return the dimensions of the input image(s). Defaults to False.
        **kwargs: Additional keyword arguments.

    Returns:
        List[List[dict]]: Each list contains dictionaries of segmented instances for a given image. Each dictionary contains:
            - x, y: Center coordinates of the instance.
            - width, height: Width and height of the bounding box around the instance.
            - class: Name of the detected class.
            - confidence: Confidence score of the detection.
            - points: List of points describing the segmented mask's boundary.
            - class_id: ID corresponding to the detected class.
        If `return_image_dims` is True, the function returns a tuple where the first element is the list of detections and the
        second element is the list of image dimensions.

    Notes:
        - The function supports processing multiple images in a batch.
        - If an input list of images is provided, the function returns a list of lists,
          where each inner list corresponds to the detections for a specific image.
        - The function internally uses an ONNX model for inference.
    """
    return super().infer(
        image,
        class_agnostic_nms=class_agnostic_nms,
        confidence=confidence,
        iou_threshold=iou_threshold,
        max_candidates=max_candidates,
        max_detections=max_detections,
        return_image_dims=return_image_dims,
        **kwargs,
    )

make_response(predictions, img_dims, class_filter=None, **kwargs)

Constructs a list of InstanceSegmentationInferenceResponse objects based on the provided predictions and image dimensions, optionally filtering by class name.

Parameters:

Name Type Description Default
predictions List[List[dict]]

A list containing batch predictions, where each inner list contains dictionaries of segmented instances for a given image.

required
img_dims List[Tuple[int, int]]

List of tuples specifying the dimensions of each image in the format (height, width).

required
class_filter List[str]

A list of class names to filter the predictions by. If not provided, all predictions are included.

None

Returns:

Type Description
List[InstanceSegmentationInferenceResponse]

List[InstanceSegmentationInferenceResponse]: A list of response objects, each containing the filtered

List[InstanceSegmentationInferenceResponse]

predictions and corresponding image dimensions for a given image.

Examples:

>>> predictions = [[{"class_name": "cat", ...}, {"class_name": "dog", ...}], ...]
>>> img_dims = [(300, 400), ...]
>>> responses = make_response(predictions, img_dims, class_filter=["cat"])
>>> len(responses[0].predictions)  # Only predictions with "cat" class are included
1
Source code in inference/models/yolact/yolact_instance_segmentation.py
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
def make_response(
    self,
    predictions: List[List[dict]],
    img_dims: List[Tuple[int, int]],
    class_filter: List[str] = None,
    **kwargs,
) -> List[InstanceSegmentationInferenceResponse]:
    """
    Constructs a list of InstanceSegmentationInferenceResponse objects based on the provided predictions
    and image dimensions, optionally filtering by class name.

    Args:
        predictions (List[List[dict]]): A list containing batch predictions, where each inner list contains
            dictionaries of segmented instances for a given image.
        img_dims (List[Tuple[int, int]]): List of tuples specifying the dimensions of each image in the format
            (height, width).
        class_filter (List[str], optional): A list of class names to filter the predictions by. If not provided,
            all predictions are included.

    Returns:
        List[InstanceSegmentationInferenceResponse]: A list of response objects, each containing the filtered
        predictions and corresponding image dimensions for a given image.

    Examples:
        >>> predictions = [[{"class_name": "cat", ...}, {"class_name": "dog", ...}], ...]
        >>> img_dims = [(300, 400), ...]
        >>> responses = make_response(predictions, img_dims, class_filter=["cat"])
        >>> len(responses[0].predictions)  # Only predictions with "cat" class are included
        1
    """
    responses = [
        InstanceSegmentationInferenceResponse(
            predictions=[
                InstanceSegmentationPrediction(**p)
                for p in batch_pred
                if not class_filter or p["class_name"] in class_filter
            ],
            image=InferenceResponseImage(
                width=img_dims[i][1], height=img_dims[i][0]
            ),
        )
        for i, batch_pred in enumerate(predictions)
    ]
    return responses