Yolo26 instance segmentation
YOLO26InstanceSegmentation
¶
Bases: YOLOv11InstanceSegmentation
YOLO26 Instance Segmentation model with end-to-end ONNX output.
YOLO26 exports with NMS already applied, outputting: - predictions: (batch, num_detections, 38) where 38 = 6 + 32 mask coefficients Format: [x1, y1, x2, y2, confidence, class_index, mask_coeff_0, ..., mask_coeff_31] - protos: (batch, 32, H, W) mask prototypes
Source code in inference/models/yolo26/yolo26_instance_segmentation.py
31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 | |
make_response(predictions, masks, img_dims, class_filter=None, *args, **kwargs)
¶
Constructs instance segmentation response objects.
YOLO26 prediction format: [x1, y1, x2, y2, conf, class_idx, mask_coeffs...]
Source code in inference/models/yolo26/yolo26_instance_segmentation.py
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 | |
postprocess(predictions, preprocess_return_metadata, confidence=DEFAULT_CONFIDENCE, mask_decode_mode=DEFAULT_MASK_DECODE_MODE, tradeoff_factor=DEFAULT_TRADEOFF_FACTOR, **kwargs)
¶
Postprocesses the instance segmentation predictions.
YOLO26 predictions come with NMS already applied, so we just need to: 1. Filter by confidence 2. Decode masks 3. Format response
Source code in inference/models/yolo26/yolo26_instance_segmentation.py
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 | |
predict(img_in, **kwargs)
¶
Performs inference on the given image using the ONNX session.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
img_in
|
ndarray
|
Input image as a NumPy array. |
required |
Returns:
| Type | Description |
|---|---|
Tuple[ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray]: Predictions and mask prototypes. |
Source code in inference/models/yolo26/yolo26_instance_segmentation.py
40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 | |