Yolov10 object detection
            YOLOv10ObjectDetection
¶
    
              Bases: ObjectDetectionBaseOnnxRoboflowInferenceModel
Roboflow ONNX Object detection model (Implements an object detection specific infer method).
This class is responsible for performing object detection using the YOLOv10 model with ONNX runtime.
Attributes:
| Name | Type | Description | 
|---|---|---|
weights_file | 
            
                  str
             | 
            
               Path to the ONNX weights file.  | 
          
Methods:
| Name | Description | 
|---|---|
predict | 
              
                 Performs object detection on the given image using the ONNX session.  | 
            
Source code in inference/models/yolov10/yolov10_object_detection.py
                15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98  |  | 
            weights_file
  
      property
  
¶
    Gets the weights file for the YOLOv10 model.
Returns:
| Name | Type | Description | 
|---|---|---|
str |             
                  str
             | 
            
               Path to the ONNX weights file.  | 
          
            postprocess(predictions, preproc_return_metadata, confidence=DEFAULT_CONFIDENCE, max_detections=DEFAUlT_MAX_DETECTIONS, **kwargs)
¶
    Postprocesses the object detection predictions.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                predictions
             | 
            
                  ndarray
             | 
            
               Raw predictions from the model.  | 
            required | 
                img_dims
             | 
            
                  List[Tuple[int, int]]
             | 
            
               Dimensions of the images.  | 
            required | 
                confidence
             | 
            
                  float
             | 
            
               Confidence threshold for filtering detections. Default is 0.5.  | 
            
                  DEFAULT_CONFIDENCE
             | 
          
                max_detections
             | 
            
                  int
             | 
            
               Maximum number of final detections. Default is 300.  | 
            
                  DEFAUlT_MAX_DETECTIONS
             | 
          
Returns:
| Type | Description | 
|---|---|
                  List[ObjectDetectionInferenceResponse]
             | 
            
               List[ObjectDetectionInferenceResponse]: The post-processed predictions.  | 
          
Source code in inference/models/yolov10/yolov10_object_detection.py
              55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95  |  | 
            predict(img_in, **kwargs)
¶
    Performs object detection on the given image using the ONNX session.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
                img_in
             | 
            
                  ndarray
             | 
            
               Input image as a NumPy array.  | 
            required | 
Returns:
| Type | Description | 
|---|---|
                  Tuple[ndarray]
             | 
            
               Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores.  | 
          
Source code in inference/models/yolov10/yolov10_object_detection.py
              39 40 41 42 43 44 45 46 47 48 49 50 51 52 53  |  |