Bases: InstanceSegmentationBaseOnnxRoboflowInferenceModel
YOLOv8 Instance Segmentation ONNX Inference Model.
This class is responsible for performing instance segmentation using the YOLOv8 model
with ONNX runtime.
Attributes:
Name |
Type |
Description |
weights_file |
str
|
Path to the ONNX weights file.
|
Methods:
Name |
Description |
predict |
Performs inference on the given image using the ONNX session.
|
Source code in inference/models/yolov8/yolov8_instance_segmentation.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | class YOLOv8InstanceSegmentation(InstanceSegmentationBaseOnnxRoboflowInferenceModel):
"""YOLOv8 Instance Segmentation ONNX Inference Model.
This class is responsible for performing instance segmentation using the YOLOv8 model
with ONNX runtime.
Attributes:
weights_file (str): Path to the ONNX weights file.
Methods:
predict: Performs inference on the given image using the ONNX session.
"""
@property
def weights_file(self) -> str:
"""Gets the weights file for the YOLOv8 model.
Returns:
str: Path to the ONNX weights file.
"""
return "weights.onnx"
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
"""Performs inference on the given image using the ONNX session.
Args:
img_in (np.ndarray): Input image as a NumPy array.
Returns:
Tuple[np.ndarray, np.ndarray]: Tuple containing two NumPy arrays representing the predictions and protos. The predictions include boxes, confidence scores, class confidence scores, and masks.
"""
predictions = self.onnx_session.run(None, {self.input_name: img_in})
protos = predictions[1]
predictions = predictions[0]
predictions = predictions.transpose(0, 2, 1)
boxes = predictions[:, :, :4]
class_confs = predictions[:, :, 4:-32]
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2)
masks = predictions[:, :, -32:]
predictions = np.concatenate([boxes, confs, class_confs, masks], axis=2)
return predictions, protos
|
weights_file
property
Gets the weights file for the YOLOv8 model.
Returns:
Name | Type |
Description |
str |
str
|
Path to the ONNX weights file.
|
predict(img_in, **kwargs)
Performs inference on the given image using the ONNX session.
Parameters:
Name |
Type |
Description |
Default |
img_in
|
ndarray
|
Input image as a NumPy array.
|
required
|
Returns:
Type |
Description |
Tuple[ndarray, ndarray]
|
Tuple[np.ndarray, np.ndarray]: Tuple containing two NumPy arrays representing the predictions and protos. The predictions include boxes, confidence scores, class confidence scores, and masks.
|
Source code in inference/models/yolov8/yolov8_instance_segmentation.py
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50 | def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, np.ndarray]:
"""Performs inference on the given image using the ONNX session.
Args:
img_in (np.ndarray): Input image as a NumPy array.
Returns:
Tuple[np.ndarray, np.ndarray]: Tuple containing two NumPy arrays representing the predictions and protos. The predictions include boxes, confidence scores, class confidence scores, and masks.
"""
predictions = self.onnx_session.run(None, {self.input_name: img_in})
protos = predictions[1]
predictions = predictions[0]
predictions = predictions.transpose(0, 2, 1)
boxes = predictions[:, :, :4]
class_confs = predictions[:, :, 4:-32]
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2)
masks = predictions[:, :, -32:]
predictions = np.concatenate([boxes, confs, class_confs, masks], axis=2)
return predictions, protos
|