Bases: BaseRequest
Request for CogVLM inference.
Attributes:
Name |
Type |
Description |
api_key |
Optional[str]
|
|
cog_version_id |
Optional[str]
|
The version ID of CLIP to be used for this request.
|
Source code in inference/core/entities/requests/cogvlm.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 | class CogVLMInferenceRequest(BaseRequest):
"""Request for CogVLM inference.
Attributes:
api_key (Optional[str]): Roboflow API Key.
cog_version_id (Optional[str]): The version ID of CLIP to be used for this request.
"""
cogvlm_version_id: Optional[str] = Field(
default=COGVLM_VERSION_ID,
examples=["cogvlm-chat-hf"],
description="The version ID of CogVLM to be used for this request. See the huggingface model repo at THUDM.",
)
model_id: Optional[str] = Field(None)
image: InferenceRequestImage = Field(
description="Image for CogVLM to look at. Use prompt to specify what you want it to do with the image."
)
prompt: str = Field(
description="Text to be passed to CogVLM. Use to prompt it to describe an image or provide only text to chat with the model.",
examples=["Describe this image."],
)
history: Optional[List[Tuple[str, str]]] = Field(
None,
description="Optional chat history, formatted as a list of 2-tuples where the first entry is the user prompt"
" and the second entry is the generated model response",
)
# TODO[pydantic]: We couldn't refactor the `validator`, please replace it by `field_validator` manually.
# Check https://docs.pydantic.dev/dev-v2/migration/#changes-to-validators for more information.
@validator("model_id", always=True)
def validate_model_id(cls, value, values):
if value is not None:
return value
if values.get("cogvlm_version_id") is None:
return None
return f"cogvlm/{values['cogvlm_version_id']}"
|