Bases: PipelineWatchDog
Implementation to be used from single inference thread, as it keeps
state assumed to represent status of consecutive stage of prediction process
in latency monitor.
Source code in inference/core/interfaces/stream/watchdog.py
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256 | class BasePipelineWatchDog(PipelineWatchDog):
"""
Implementation to be used from single inference thread, as it keeps
state assumed to represent status of consecutive stage of prediction process
in latency monitor.
"""
def __init__(self):
super().__init__()
self._video_sources: Optional[List[VideoSource]] = None
self._inference_throughput_monitor = sv.FPSMonitor()
self._latency_monitors: Dict[Optional[int], LatencyMonitor] = {}
self._stream_updates = deque(maxlen=MAX_UPDATES_CONTEXT)
def register_video_sources(self, video_sources: List[VideoSource]) -> None:
self._video_sources = video_sources
for source in video_sources:
self._latency_monitors[source.source_id] = LatencyMonitor(
source_id=source.source_id
)
def on_status_update(self, status_update: StatusUpdate) -> None:
if status_update.severity.value <= UpdateSeverity.DEBUG.value:
return None
self._stream_updates.append(status_update)
def on_model_inference_started(self, frames: List[VideoFrame]) -> None:
for frame in frames:
self._latency_monitors[frame.source_id].register_inference_start(
frame_timestamp=frame.frame_timestamp,
frame_id=frame.frame_id,
)
def on_model_prediction_ready(self, frames: List[VideoFrame]) -> None:
for frame in frames:
self._latency_monitors[frame.source_id].register_prediction_ready(
frame_timestamp=frame.frame_timestamp,
frame_id=frame.frame_id,
)
self._inference_throughput_monitor.tick()
def get_report(self) -> PipelineStateReport:
sources_metadata = []
if self._video_sources is not None:
sources_metadata = [s.describe_source() for s in self._video_sources]
latency_reports = [
monitor.summarise_reports() for monitor in self._latency_monitors.values()
]
if hasattr(self._inference_throughput_monitor, "fps"):
_inference_throughput_fps = self._inference_throughput_monitor.fps
else:
_inference_throughput_fps = self._inference_throughput_monitor()
return PipelineStateReport(
video_source_status_updates=list(self._stream_updates),
latency_reports=latency_reports,
inference_throughput=_inference_throughput_fps,
sources_metadata=sources_metadata,
)
|