Skip to content

classification_base

ClassificationBaseOnnxRoboflowInferenceModel

Bases: OnnxRoboflowInferenceModel

Base class for ONNX models for Roboflow classification inference.

Attributes:

Name Type Description
multiclass bool

Whether the classification is multi-class or not.

Methods:

Name Description
get_infer_bucket_file_list

Get the list of required files for inference.

softmax

Compute softmax values for a given set of scores.

infer

ClassificationInferenceRequest) -> Union[List[Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]], Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]]: Perform inference on a given request and return the response.

draw_predictions

Draw prediction visuals on an image.

Source code in inference/core/models/classification_base.py
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
class ClassificationBaseOnnxRoboflowInferenceModel(OnnxRoboflowInferenceModel):
    """Base class for ONNX models for Roboflow classification inference.

    Attributes:
        multiclass (bool): Whether the classification is multi-class or not.

    Methods:
        get_infer_bucket_file_list() -> list: Get the list of required files for inference.
        softmax(x): Compute softmax values for a given set of scores.
        infer(request: ClassificationInferenceRequest) -> Union[List[Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]], Union[ClassificationInferenceResponse, MultiLabelClassificationInferenceResponse]]: Perform inference on a given request and return the response.
        draw_predictions(inference_request, inference_response): Draw prediction visuals on an image.
    """

    task_type = "classification"

    def __init__(self, *args, **kwargs):
        """Initialize the model, setting whether it is multiclass or not."""
        super().__init__(*args, **kwargs)
        self.multiclass = self.environment.get("MULTICLASS", False)

    def draw_predictions(self, inference_request, inference_response):
        """Draw prediction visuals on an image.

        This method overlays the predictions on the input image, including drawing rectangles and text to visualize the predicted classes.

        Args:
            inference_request: The request object containing the image and parameters.
            inference_response: The response object containing the predictions and other details.

        Returns:
            bytes: The bytes of the visualized image in JPEG format.
        """
        image = load_image_rgb(inference_request.image)
        image = Image.fromarray(image)
        draw = ImageDraw.Draw(image)
        font = ImageFont.load_default()
        if isinstance(inference_response.predictions, list):
            prediction = inference_response.predictions[0]
            color = self.colors.get(prediction.class_name, "#4892EA")
            draw.rectangle(
                [0, 0, image.size[1], image.size[0]],
                outline=color,
                width=inference_request.visualization_stroke_width,
            )
            text = f"{prediction.class_id} - {prediction.class_name} {prediction.confidence:.2f}"
            text_size = font.getbbox(text)

            # set button size + 10px margins
            button_size = (text_size[2] + 20, text_size[3] + 20)
            button_img = Image.new("RGBA", button_size, color)
            # put text on button with 10px margins
            button_draw = ImageDraw.Draw(button_img)
            button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255))

            # put button on source image in position (0, 0)
            image.paste(button_img, (0, 0))
        else:
            if len(inference_response.predictions) > 0:
                box_color = "#4892EA"
                draw.rectangle(
                    [0, 0, image.size[1], image.size[0]],
                    outline=box_color,
                    width=inference_request.visualization_stroke_width,
                )
            row = 0
            predictions = [
                (cls_name, pred)
                for cls_name, pred in inference_response.predictions.items()
            ]
            predictions = sorted(
                predictions, key=lambda x: x[1].confidence, reverse=True
            )
            for i, (cls_name, pred) in enumerate(predictions):
                color = self.colors.get(cls_name, "#4892EA")
                text = f"{cls_name} {pred.confidence:.2f}"
                text_size = font.getbbox(text)

                # set button size + 10px margins
                button_size = (text_size[2] + 20, text_size[3] + 20)
                button_img = Image.new("RGBA", button_size, color)
                # put text on button with 10px margins
                button_draw = ImageDraw.Draw(button_img)
                button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255))

                # put button on source image in position (0, 0)
                image.paste(button_img, (0, row))
                row += button_size[1]

        buffered = BytesIO()
        image = image.convert("RGB")
        image.save(buffered, format="JPEG")
        return buffered.getvalue()

    def get_infer_bucket_file_list(self) -> list:
        """Get the list of required files for inference.

        Returns:
            list: A list of required files for inference, e.g., ["environment.json"].
        """
        return ["environment.json"]

    def infer(
        self,
        image: Any,
        disable_preproc_auto_orient: bool = False,
        disable_preproc_contrast: bool = False,
        disable_preproc_grayscale: bool = False,
        disable_preproc_static_crop: bool = False,
        return_image_dims: bool = False,
        **kwargs,
    ):
        """
        Perform inference on the provided image(s) and return the predictions.

        Args:
            image (Any): The image or list of images to be processed.
                - can be a BGR numpy array, filepath, InferenceRequestImage, PIL Image, byte-string, etc.
            disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False.
            disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False.
            disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False.
            disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
            return_image_dims (bool, optional): If set to True, the function will also return the dimensions of the image. Defaults to False.
            **kwargs: Additional parameters to customize the inference process.

        Returns:
            Union[List[np.array], np.array, Tuple[List[np.array], List[Tuple[int, int]]], Tuple[np.array, Tuple[int, int]]]:
            If `return_image_dims` is True and a list of images is provided, a tuple containing a list of prediction arrays and a list of image dimensions (width, height) is returned.
            If `return_image_dims` is True and a single image is provided, a tuple containing the prediction array and image dimensions (width, height) is returned.
            If `return_image_dims` is False and a list of images is provided, only the list of prediction arrays is returned.
            If `return_image_dims` is False and a single image is provided, only the prediction array is returned.

        Notes:
            - The input image(s) will be preprocessed (normalized and reshaped) before inference.
            - This function uses an ONNX session to perform inference on the input image(s).
        """
        return super().infer(
            image,
            disable_preproc_auto_orient=disable_preproc_auto_orient,
            disable_preproc_contrast=disable_preproc_contrast,
            disable_preproc_grayscale=disable_preproc_grayscale,
            disable_preproc_static_crop=disable_preproc_static_crop,
            return_image_dims=return_image_dims,
        )

    def postprocess(
        self,
        predictions: Tuple[np.ndarray],
        preprocess_return_metadata: PreprocessReturnMetadata,
        return_image_dims=False,
        **kwargs,
    ) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]:
        predictions = predictions[0]
        return self.make_response(
            predictions, preprocess_return_metadata["img_dims"], **kwargs
        )

    def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray]:
        predictions = self.onnx_session.run(None, {self.input_name: img_in})
        return (predictions,)

    def preprocess(
        self, image: Any, **kwargs
    ) -> Tuple[np.ndarray, PreprocessReturnMetadata]:
        if isinstance(image, list):
            imgs_with_dims = [
                self.preproc_image(
                    i,
                    disable_preproc_auto_orient=kwargs.get(
                        "disable_preproc_auto_orient", False
                    ),
                    disable_preproc_contrast=kwargs.get(
                        "disable_preproc_contrast", False
                    ),
                    disable_preproc_grayscale=kwargs.get(
                        "disable_preproc_grayscale", False
                    ),
                    disable_preproc_static_crop=kwargs.get(
                        "disable_preproc_static_crop", False
                    ),
                )
                for i in image
            ]
            imgs, img_dims = zip(*imgs_with_dims)
            img_in = np.concatenate(imgs, axis=0)
        else:
            img_in, img_dims = self.preproc_image(
                image,
                disable_preproc_auto_orient=kwargs.get(
                    "disable_preproc_auto_orient", False
                ),
                disable_preproc_contrast=kwargs.get("disable_preproc_contrast", False),
                disable_preproc_grayscale=kwargs.get(
                    "disable_preproc_grayscale", False
                ),
                disable_preproc_static_crop=kwargs.get(
                    "disable_preproc_static_crop", False
                ),
            )
            img_dims = [img_dims]

        img_in /= 255.0

        mean = (0.5, 0.5, 0.5)
        std = (0.5, 0.5, 0.5)

        img_in = img_in.astype(np.float32)

        img_in[:, 0, :, :] = (img_in[:, 0, :, :] - mean[0]) / std[0]
        img_in[:, 1, :, :] = (img_in[:, 1, :, :] - mean[1]) / std[1]
        img_in[:, 2, :, :] = (img_in[:, 2, :, :] - mean[2]) / std[2]
        return img_in, PreprocessReturnMetadata({"img_dims": img_dims})

    def infer_from_request(
        self,
        request: ClassificationInferenceRequest,
    ) -> Union[List[InferenceResponse], InferenceResponse]:
        """
        Handle an inference request to produce an appropriate response.

        Args:
            request (ClassificationInferenceRequest): The request object encapsulating the image(s) and relevant parameters.

        Returns:
            Union[List[InferenceResponse], InferenceResponse]: The response object(s) containing the predictions, visualization, and other pertinent details. If a list of images was provided, a list of responses is returned. Otherwise, a single response is returned.

        Notes:
            - Starts a timer at the beginning to calculate inference time.
            - Processes the image(s) through the `infer` method.
            - Generates the appropriate response object(s) using `make_response`.
            - Calculates and sets the time taken for inference.
            - If visualization is requested, the predictions are drawn on the image.
        """
        t1 = perf_counter()
        responses = self.infer(**request.dict(), return_image_dims=True)
        for response in responses:
            response.time = perf_counter() - t1
            response.inference_id = getattr(request, "id", None)

        if request.visualize_predictions:
            for response in responses:
                response.visualization = self.draw_predictions(request, response)

        if not isinstance(request.image, list):
            responses = responses[0]

        return responses

    def make_response(
        self,
        predictions,
        img_dims,
        confidence: float = 0.5,
        **kwargs,
    ) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]:
        """
        Create response objects for the given predictions and image dimensions.

        Args:
            predictions (list): List of prediction arrays from the inference process.
            img_dims (list): List of tuples indicating the dimensions (width, height) of each image.
            confidence (float, optional): Confidence threshold for filtering predictions. Defaults to 0.5.
            **kwargs: Additional parameters to influence the response creation process.

        Returns:
            Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: A response object or a list of response objects encapsulating the prediction details.

        Notes:
            - If the model is multiclass, a `MultiLabelClassificationInferenceResponse` is generated for each image.
            - If the model is not multiclass, a `ClassificationInferenceResponse` is generated for each image.
            - Predictions below the confidence threshold are filtered out.
        """
        responses = []
        confidence_threshold = float(confidence)
        for ind, prediction in enumerate(predictions):
            if self.multiclass:
                preds = prediction[0]
                results = dict()
                predicted_classes = []
                for i, o in enumerate(preds):
                    cls_name = self.class_names[i]
                    score = float(o)
                    results[cls_name] = {"confidence": score, "class_id": i}
                    if score > confidence_threshold:
                        predicted_classes.append(cls_name)
                response = MultiLabelClassificationInferenceResponse(
                    image=InferenceResponseImage(
                        width=img_dims[ind][0], height=img_dims[ind][1]
                    ),
                    predicted_classes=predicted_classes,
                    predictions=results,
                )
            else:
                preds = prediction[0]
                preds = self.softmax(preds)
                results = []
                for i, cls_name in enumerate(self.class_names):
                    score = float(preds[i])
                    pred = {
                        "class_id": i,
                        "class": cls_name,
                        "confidence": round(score, 4),
                    }
                    results.append(pred)
                results = sorted(results, key=lambda x: x["confidence"], reverse=True)

                response = ClassificationInferenceResponse(
                    image=InferenceResponseImage(
                        width=img_dims[ind][1], height=img_dims[ind][0]
                    ),
                    predictions=results,
                    top=results[0]["class"],
                    confidence=results[0]["confidence"],
                )
            responses.append(response)

        return responses

    @staticmethod
    def softmax(x):
        """Compute softmax values for each set of scores in x.

        Args:
            x (np.array): The input array containing the scores.

        Returns:
            np.array: The softmax values for each set of scores.
        """
        e_x = np.exp(x - np.max(x))
        return e_x / e_x.sum()

    def get_model_output_shape(self) -> Tuple[int, int, int]:
        test_image = (np.random.rand(1024, 1024, 3) * 255).astype(np.uint8)
        test_image, _ = self.preprocess(test_image)
        output = np.array(self.predict(test_image))
        return output.shape

    def validate_model_classes(self) -> None:
        output_shape = self.get_model_output_shape()
        num_classes = output_shape[3]
        try:
            assert num_classes == self.num_classes
        except AssertionError:
            raise ValueError(
                f"Number of classes in model ({num_classes}) does not match the number of classes in the environment ({self.num_classes})"
            )

__init__(*args, **kwargs)

Initialize the model, setting whether it is multiclass or not.

Source code in inference/core/models/classification_base.py
38
39
40
41
def __init__(self, *args, **kwargs):
    """Initialize the model, setting whether it is multiclass or not."""
    super().__init__(*args, **kwargs)
    self.multiclass = self.environment.get("MULTICLASS", False)

draw_predictions(inference_request, inference_response)

Draw prediction visuals on an image.

This method overlays the predictions on the input image, including drawing rectangles and text to visualize the predicted classes.

Parameters:

Name Type Description Default
inference_request

The request object containing the image and parameters.

required
inference_response

The response object containing the predictions and other details.

required

Returns:

Name Type Description
bytes

The bytes of the visualized image in JPEG format.

Source code in inference/core/models/classification_base.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
def draw_predictions(self, inference_request, inference_response):
    """Draw prediction visuals on an image.

    This method overlays the predictions on the input image, including drawing rectangles and text to visualize the predicted classes.

    Args:
        inference_request: The request object containing the image and parameters.
        inference_response: The response object containing the predictions and other details.

    Returns:
        bytes: The bytes of the visualized image in JPEG format.
    """
    image = load_image_rgb(inference_request.image)
    image = Image.fromarray(image)
    draw = ImageDraw.Draw(image)
    font = ImageFont.load_default()
    if isinstance(inference_response.predictions, list):
        prediction = inference_response.predictions[0]
        color = self.colors.get(prediction.class_name, "#4892EA")
        draw.rectangle(
            [0, 0, image.size[1], image.size[0]],
            outline=color,
            width=inference_request.visualization_stroke_width,
        )
        text = f"{prediction.class_id} - {prediction.class_name} {prediction.confidence:.2f}"
        text_size = font.getbbox(text)

        # set button size + 10px margins
        button_size = (text_size[2] + 20, text_size[3] + 20)
        button_img = Image.new("RGBA", button_size, color)
        # put text on button with 10px margins
        button_draw = ImageDraw.Draw(button_img)
        button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255))

        # put button on source image in position (0, 0)
        image.paste(button_img, (0, 0))
    else:
        if len(inference_response.predictions) > 0:
            box_color = "#4892EA"
            draw.rectangle(
                [0, 0, image.size[1], image.size[0]],
                outline=box_color,
                width=inference_request.visualization_stroke_width,
            )
        row = 0
        predictions = [
            (cls_name, pred)
            for cls_name, pred in inference_response.predictions.items()
        ]
        predictions = sorted(
            predictions, key=lambda x: x[1].confidence, reverse=True
        )
        for i, (cls_name, pred) in enumerate(predictions):
            color = self.colors.get(cls_name, "#4892EA")
            text = f"{cls_name} {pred.confidence:.2f}"
            text_size = font.getbbox(text)

            # set button size + 10px margins
            button_size = (text_size[2] + 20, text_size[3] + 20)
            button_img = Image.new("RGBA", button_size, color)
            # put text on button with 10px margins
            button_draw = ImageDraw.Draw(button_img)
            button_draw.text((10, 10), text, font=font, fill=(255, 255, 255, 255))

            # put button on source image in position (0, 0)
            image.paste(button_img, (0, row))
            row += button_size[1]

    buffered = BytesIO()
    image = image.convert("RGB")
    image.save(buffered, format="JPEG")
    return buffered.getvalue()

get_infer_bucket_file_list()

Get the list of required files for inference.

Returns:

Name Type Description
list list

A list of required files for inference, e.g., ["environment.json"].

Source code in inference/core/models/classification_base.py
116
117
118
119
120
121
122
def get_infer_bucket_file_list(self) -> list:
    """Get the list of required files for inference.

    Returns:
        list: A list of required files for inference, e.g., ["environment.json"].
    """
    return ["environment.json"]

infer(image, disable_preproc_auto_orient=False, disable_preproc_contrast=False, disable_preproc_grayscale=False, disable_preproc_static_crop=False, return_image_dims=False, **kwargs)

Perform inference on the provided image(s) and return the predictions.

Parameters:

Name Type Description Default
image Any

The image or list of images to be processed. - can be a BGR numpy array, filepath, InferenceRequestImage, PIL Image, byte-string, etc.

required
disable_preproc_auto_orient bool

If true, the auto orient preprocessing step is disabled for this call. Default is False.

False
disable_preproc_contrast bool

If true, the auto contrast preprocessing step is disabled for this call. Default is False.

False
disable_preproc_grayscale bool

If true, the grayscale preprocessing step is disabled for this call. Default is False.

False
disable_preproc_static_crop bool

If true, the static crop preprocessing step is disabled for this call. Default is False.

False
return_image_dims bool

If set to True, the function will also return the dimensions of the image. Defaults to False.

False
**kwargs

Additional parameters to customize the inference process.

{}

Returns:

Type Description

Union[List[np.array], np.array, Tuple[List[np.array], List[Tuple[int, int]]], Tuple[np.array, Tuple[int, int]]]:

If return_image_dims is True and a list of images is provided, a tuple containing a list of prediction arrays and a list of image dimensions (width, height) is returned.

If return_image_dims is True and a single image is provided, a tuple containing the prediction array and image dimensions (width, height) is returned.

If return_image_dims is False and a list of images is provided, only the list of prediction arrays is returned.

If return_image_dims is False and a single image is provided, only the prediction array is returned.

Notes
  • The input image(s) will be preprocessed (normalized and reshaped) before inference.
  • This function uses an ONNX session to perform inference on the input image(s).
Source code in inference/core/models/classification_base.py
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
def infer(
    self,
    image: Any,
    disable_preproc_auto_orient: bool = False,
    disable_preproc_contrast: bool = False,
    disable_preproc_grayscale: bool = False,
    disable_preproc_static_crop: bool = False,
    return_image_dims: bool = False,
    **kwargs,
):
    """
    Perform inference on the provided image(s) and return the predictions.

    Args:
        image (Any): The image or list of images to be processed.
            - can be a BGR numpy array, filepath, InferenceRequestImage, PIL Image, byte-string, etc.
        disable_preproc_auto_orient (bool, optional): If true, the auto orient preprocessing step is disabled for this call. Default is False.
        disable_preproc_contrast (bool, optional): If true, the auto contrast preprocessing step is disabled for this call. Default is False.
        disable_preproc_grayscale (bool, optional): If true, the grayscale preprocessing step is disabled for this call. Default is False.
        disable_preproc_static_crop (bool, optional): If true, the static crop preprocessing step is disabled for this call. Default is False.
        return_image_dims (bool, optional): If set to True, the function will also return the dimensions of the image. Defaults to False.
        **kwargs: Additional parameters to customize the inference process.

    Returns:
        Union[List[np.array], np.array, Tuple[List[np.array], List[Tuple[int, int]]], Tuple[np.array, Tuple[int, int]]]:
        If `return_image_dims` is True and a list of images is provided, a tuple containing a list of prediction arrays and a list of image dimensions (width, height) is returned.
        If `return_image_dims` is True and a single image is provided, a tuple containing the prediction array and image dimensions (width, height) is returned.
        If `return_image_dims` is False and a list of images is provided, only the list of prediction arrays is returned.
        If `return_image_dims` is False and a single image is provided, only the prediction array is returned.

    Notes:
        - The input image(s) will be preprocessed (normalized and reshaped) before inference.
        - This function uses an ONNX session to perform inference on the input image(s).
    """
    return super().infer(
        image,
        disable_preproc_auto_orient=disable_preproc_auto_orient,
        disable_preproc_contrast=disable_preproc_contrast,
        disable_preproc_grayscale=disable_preproc_grayscale,
        disable_preproc_static_crop=disable_preproc_static_crop,
        return_image_dims=return_image_dims,
    )

infer_from_request(request)

Handle an inference request to produce an appropriate response.

Parameters:

Name Type Description Default
request ClassificationInferenceRequest

The request object encapsulating the image(s) and relevant parameters.

required

Returns:

Type Description
Union[List[InferenceResponse], InferenceResponse]

Union[List[InferenceResponse], InferenceResponse]: The response object(s) containing the predictions, visualization, and other pertinent details. If a list of images was provided, a list of responses is returned. Otherwise, a single response is returned.

Notes
  • Starts a timer at the beginning to calculate inference time.
  • Processes the image(s) through the infer method.
  • Generates the appropriate response object(s) using make_response.
  • Calculates and sets the time taken for inference.
  • If visualization is requested, the predictions are drawn on the image.
Source code in inference/core/models/classification_base.py
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
def infer_from_request(
    self,
    request: ClassificationInferenceRequest,
) -> Union[List[InferenceResponse], InferenceResponse]:
    """
    Handle an inference request to produce an appropriate response.

    Args:
        request (ClassificationInferenceRequest): The request object encapsulating the image(s) and relevant parameters.

    Returns:
        Union[List[InferenceResponse], InferenceResponse]: The response object(s) containing the predictions, visualization, and other pertinent details. If a list of images was provided, a list of responses is returned. Otherwise, a single response is returned.

    Notes:
        - Starts a timer at the beginning to calculate inference time.
        - Processes the image(s) through the `infer` method.
        - Generates the appropriate response object(s) using `make_response`.
        - Calculates and sets the time taken for inference.
        - If visualization is requested, the predictions are drawn on the image.
    """
    t1 = perf_counter()
    responses = self.infer(**request.dict(), return_image_dims=True)
    for response in responses:
        response.time = perf_counter() - t1
        response.inference_id = getattr(request, "id", None)

    if request.visualize_predictions:
        for response in responses:
            response.visualization = self.draw_predictions(request, response)

    if not isinstance(request.image, list):
        responses = responses[0]

    return responses

make_response(predictions, img_dims, confidence=0.5, **kwargs)

Create response objects for the given predictions and image dimensions.

Parameters:

Name Type Description Default
predictions list

List of prediction arrays from the inference process.

required
img_dims list

List of tuples indicating the dimensions (width, height) of each image.

required
confidence float

Confidence threshold for filtering predictions. Defaults to 0.5.

0.5
**kwargs

Additional parameters to influence the response creation process.

{}

Returns:

Type Description
Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]

Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: A response object or a list of response objects encapsulating the prediction details.

Notes
  • If the model is multiclass, a MultiLabelClassificationInferenceResponse is generated for each image.
  • If the model is not multiclass, a ClassificationInferenceResponse is generated for each image.
  • Predictions below the confidence threshold are filtered out.
Source code in inference/core/models/classification_base.py
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
def make_response(
    self,
    predictions,
    img_dims,
    confidence: float = 0.5,
    **kwargs,
) -> Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]:
    """
    Create response objects for the given predictions and image dimensions.

    Args:
        predictions (list): List of prediction arrays from the inference process.
        img_dims (list): List of tuples indicating the dimensions (width, height) of each image.
        confidence (float, optional): Confidence threshold for filtering predictions. Defaults to 0.5.
        **kwargs: Additional parameters to influence the response creation process.

    Returns:
        Union[ClassificationInferenceResponse, List[ClassificationInferenceResponse]]: A response object or a list of response objects encapsulating the prediction details.

    Notes:
        - If the model is multiclass, a `MultiLabelClassificationInferenceResponse` is generated for each image.
        - If the model is not multiclass, a `ClassificationInferenceResponse` is generated for each image.
        - Predictions below the confidence threshold are filtered out.
    """
    responses = []
    confidence_threshold = float(confidence)
    for ind, prediction in enumerate(predictions):
        if self.multiclass:
            preds = prediction[0]
            results = dict()
            predicted_classes = []
            for i, o in enumerate(preds):
                cls_name = self.class_names[i]
                score = float(o)
                results[cls_name] = {"confidence": score, "class_id": i}
                if score > confidence_threshold:
                    predicted_classes.append(cls_name)
            response = MultiLabelClassificationInferenceResponse(
                image=InferenceResponseImage(
                    width=img_dims[ind][0], height=img_dims[ind][1]
                ),
                predicted_classes=predicted_classes,
                predictions=results,
            )
        else:
            preds = prediction[0]
            preds = self.softmax(preds)
            results = []
            for i, cls_name in enumerate(self.class_names):
                score = float(preds[i])
                pred = {
                    "class_id": i,
                    "class": cls_name,
                    "confidence": round(score, 4),
                }
                results.append(pred)
            results = sorted(results, key=lambda x: x["confidence"], reverse=True)

            response = ClassificationInferenceResponse(
                image=InferenceResponseImage(
                    width=img_dims[ind][1], height=img_dims[ind][0]
                ),
                predictions=results,
                top=results[0]["class"],
                confidence=results[0]["confidence"],
            )
        responses.append(response)

    return responses

softmax(x) staticmethod

Compute softmax values for each set of scores in x.

Parameters:

Name Type Description Default
x array

The input array containing the scores.

required

Returns:

Type Description

np.array: The softmax values for each set of scores.

Source code in inference/core/models/classification_base.py
340
341
342
343
344
345
346
347
348
349
350
351
@staticmethod
def softmax(x):
    """Compute softmax values for each set of scores in x.

    Args:
        x (np.array): The input array containing the scores.

    Returns:
        np.array: The softmax values for each set of scores.
    """
    e_x = np.exp(x - np.max(x))
    return e_x / e_x.sum()