keypoints_detection_base
KeypointsDetectionBaseOnnxRoboflowInferenceModel
¶
Bases: ObjectDetectionBaseOnnxRoboflowInferenceModel
Roboflow ONNX Object detection model. This class implements an object detection specific infer method.
Source code in inference/core/models/keypoints_detection_base.py
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
|
get_infer_bucket_file_list()
¶
Returns the list of files to be downloaded from the inference bucket for ONNX model.
Returns:
Name | Type | Description |
---|---|---|
list |
list
|
A list of filenames specific to ONNX models. |
Source code in inference/core/models/keypoints_detection_base.py
40 41 42 43 44 45 46 |
|
make_response(predictions, img_dims, class_filter=None, *args, **kwargs)
¶
Constructs object detection response objects based on predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
List[List[float]]
|
The list of predictions. |
required |
img_dims
|
List[Tuple[int, int]]
|
Dimensions of the images. |
required |
class_filter
|
Optional[List[str]]
|
A list of class names to filter, if provided. |
None
|
Returns:
Type | Description |
---|---|
List[KeypointsDetectionInferenceResponse]
|
List[KeypointsDetectionInferenceResponse]: A list of response objects containing keypoints detection predictions. |
Source code in inference/core/models/keypoints_detection_base.py
112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
|
postprocess(predictions, preproc_return_metadata, class_agnostic_nms=DEFAULT_CLASS_AGNOSTIC_NMS, confidence=DEFAULT_CONFIDENCE, iou_threshold=DEFAULT_IOU_THRESH, max_candidates=DEFAULT_MAX_CANDIDATES, max_detections=DEFAUlT_MAX_DETECTIONS, return_image_dims=False, **kwargs)
¶
Postprocesses the object detection predictions.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
ndarray
|
Raw predictions from the model. |
required |
img_dims
|
List[Tuple[int, int]]
|
Dimensions of the images. |
required |
class_agnostic_nms
|
bool
|
Whether to apply class-agnostic non-max suppression. Default is False. |
DEFAULT_CLASS_AGNOSTIC_NMS
|
confidence
|
float
|
Confidence threshold for filtering detections. Default is 0.5. |
DEFAULT_CONFIDENCE
|
iou_threshold
|
float
|
IoU threshold for non-max suppression. Default is 0.5. |
DEFAULT_IOU_THRESH
|
max_candidates
|
int
|
Maximum number of candidate detections. Default is 3000. |
DEFAULT_MAX_CANDIDATES
|
max_detections
|
int
|
Maximum number of final detections. Default is 300. |
DEFAUlT_MAX_DETECTIONS
|
Returns:
Type | Description |
---|---|
List[KeypointsDetectionInferenceResponse]
|
List[KeypointsDetectionInferenceResponse]: The post-processed predictions. |
Source code in inference/core/models/keypoints_detection_base.py
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 |
|