postprocess
cosine_similarity(a, b)
¶
Compute the cosine similarity between two vectors.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
a
|
ndarray
|
Vector A. |
required |
b
|
ndarray
|
Vector B. |
required |
Returns:
Name | Type | Description |
---|---|---|
float |
Union[number, ndarray]
|
Cosine similarity between vectors A and B. |
Source code in inference/core/utils/postprocess.py
14 15 16 17 18 19 20 21 22 23 24 25 |
|
crop_mask(masks, boxes)
¶
"Crop" predicted masks by zeroing out everything not in the predicted bbox. Vectorized by Chong (thanks Chong).
Source code in inference/core/utils/postprocess.py
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 |
|
get_static_crop_dimensions(orig_shape, preproc, disable_preproc_static_crop=False)
¶
Generates a transformation based on preprocessing configuration.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
orig_shape
|
tuple
|
The original shape of the object (e.g., image) - (height, width). |
required |
preproc
|
dict
|
Preprocessing configuration dictionary, containing information such as static cropping. |
required |
disable_preproc_static_crop
|
bool
|
If true, the static crop preprocessing step is disabled for this call. Default is False. |
False
|
Returns:
Name | Type | Description |
---|---|---|
tuple |
Tuple[Tuple[int, int], Tuple[int, int]]
|
A tuple containing the shift in the x and y directions, and the updated original shape after cropping. |
Source code in inference/core/utils/postprocess.py
473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 |
|
mask2multipoly(mask)
¶
Find all contours in the mask and return them as a float32 array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
ndarray
|
A binary mask. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Contours represented as a float32 array. |
Source code in inference/core/utils/postprocess.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 |
|
mask2poly(mask)
¶
Find contours in the mask and return them as a float32 array.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
mask
|
ndarray
|
A binary mask. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
np.ndarray: Contours represented as a float32 array. |
Source code in inference/core/utils/postprocess.py
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 |
|
masks2multipoly(masks)
¶
Converts binary masks to polygonal segments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
masks
|
ndarray
|
A set of binary masks, where masks are multiplied by 255 and converted to uint8 type. |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
List[ndarray]
|
A list of segments, where each segment is obtained by converting the corresponding mask. |
Source code in inference/core/utils/postprocess.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 |
|
masks2poly(masks)
¶
Converts binary masks to polygonal segments.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
masks
|
ndarray
|
A set of binary masks, where masks are multiplied by 255 and converted to uint8 type. |
required |
Returns:
Name | Type | Description |
---|---|---|
list |
List[ndarray]
|
A list of segments, where each segment is obtained by converting the corresponding mask. |
Source code in inference/core/utils/postprocess.py
28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
|
post_process_bboxes(predictions, infer_shape, img_dims, preproc, disable_preproc_static_crop=False, resize_method='Stretch to')
¶
Postprocesses each patch of detections by scaling them to the original image coordinates and by shifting them based on a static crop preproc (if applied).
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
List[List[List[float]]]
|
The predictions output from NMS, indices are: batch x prediction x [x1, y1, x2, y2, ...]. |
required |
infer_shape
|
Tuple[int, int]
|
The shape of the inference image. |
required |
img_dims
|
List[Tuple[int, int]]
|
The dimensions of the original image for each batch, indices are: batch x [height, width]. |
required |
preproc
|
dict
|
Preprocessing configuration dictionary. |
required |
disable_preproc_static_crop
|
bool
|
If true, the static crop preprocessing step is disabled for this call. Default is False. |
False
|
resize_method
|
str
|
Resize method for image. Defaults to "Stretch to". |
'Stretch to'
|
Returns:
Type | Description |
---|---|
List[List[List[float]]]
|
List[List[List[float]]]: The scaled and shifted predictions, indices are: batch x prediction x [x1, y1, x2, y2, ...]. |
Source code in inference/core/utils/postprocess.py
98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
|
post_process_keypoints(predictions, keypoints_start_index, infer_shape, img_dims, preproc, disable_preproc_static_crop=False, resize_method='Stretch to')
¶
Scales and shifts keypoints based on the given image shapes and preprocessing method.
This function performs polygon scaling and shifting based on the specified resizing method and pre-processing steps. The polygons are transformed according to the ratio and padding between two images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
predictions
|
List[List[List[float]]]
|
predictions from model |
required |
keypoints_start_index
|
int
|
offset in the 3rd dimension pointing where in the prediction start keypoints [(x, y, cfg), ...] for each keypoint class |
required |
img_dims
|
list of (tuple of int
|
Shape of the source image (height, width). |
required |
infer_shape
|
tuple of int
|
Shape of the target image (height, width). |
required |
preproc
|
object
|
Preprocessing details used for generating the transformation. |
required |
resize_method
|
str
|
Resizing method, either "Stretch to", "Fit (black edges) in", "Fit (white edges) in", or "Fit (grey edges) in". Defaults to "Stretch to". |
'Stretch to'
|
disable_preproc_static_crop
|
bool
|
flag to disable static crop |
False
|
Returns: list of list of list: predictions with post-processed keypoints
Source code in inference/core/utils/postprocess.py
522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 |
|
post_process_polygons(origin_shape, polys, infer_shape, preproc, resize_method='Stretch to')
¶
Scales and shifts polygons based on the given image shapes and preprocessing method.
This function performs polygon scaling and shifting based on the specified resizing method and pre-processing steps. The polygons are transformed according to the ratio and padding between two images.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
origin_shape
|
tuple of int
|
Shape of the source image (height, width). |
required |
infer_shape
|
tuple of int
|
Shape of the target image (height, width). |
required |
polys
|
list of list of tuple
|
List of polygons, where each polygon is represented by a list of (x, y) coordinates. |
required |
preproc
|
object
|
Preprocessing details used for generating the transformation. |
required |
resize_method
|
str
|
Resizing method, either "Stretch to", "Fit (black edges) in", "Fit (white edges) in", or "Fit (grey edges) in". Defaults to "Stretch to". |
'Stretch to'
|
Returns:
Type | Description |
---|---|
List[List[Tuple[float, float]]]
|
list of list of tuple: A list of shifted and scaled polygons. |
Source code in inference/core/utils/postprocess.py
393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 |
|
process_mask_accurate(protos, masks_in, bboxes, shape)
¶
Returns masks that are the size of the original image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
protos
|
ndarray
|
Prototype masks. |
required |
masks_in
|
ndarray
|
Input masks. |
required |
bboxes
|
ndarray
|
Bounding boxes. |
required |
shape
|
tuple
|
Target shape. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Processed masks. |
Source code in inference/core/utils/postprocess.py
228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
|
process_mask_fast(protos, masks_in, bboxes, shape)
¶
Returns masks in their original size.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
protos
|
ndarray
|
Prototype masks. |
required |
masks_in
|
ndarray
|
Input masks. |
required |
bboxes
|
ndarray
|
Bounding boxes. |
required |
shape
|
tuple
|
Target shape. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Processed masks. |
Source code in inference/core/utils/postprocess.py
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 |
|
process_mask_tradeoff(protos, masks_in, bboxes, shape, tradeoff_factor)
¶
Returns masks that are the size of the original image with a tradeoff factor applied.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
protos
|
ndarray
|
Prototype masks. |
required |
masks_in
|
ndarray
|
Input masks. |
required |
bboxes
|
ndarray
|
Bounding boxes. |
required |
shape
|
tuple
|
Target shape. |
required |
tradeoff_factor
|
float
|
Tradeoff factor for resizing masks. |
required |
Returns:
Type | Description |
---|---|
ndarray
|
numpy.ndarray: Processed masks. |
Source code in inference/core/utils/postprocess.py
264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 |
|
sigmoid(x)
¶
Computes the sigmoid function for the given input.
The sigmoid function is defined as: f(x) = 1 / (1 + exp(-x))
Parameters:
Name | Type | Description | Default |
---|---|---|---|
x
|
float or ndarray
|
Input value or array for which the sigmoid function is to be computed. |
required |
Returns:
Type | Description |
---|---|
Union[float, number, ndarray]
|
float or numpy.ndarray: The computed sigmoid value(s). |
Source code in inference/core/utils/postprocess.py
646 647 648 649 650 651 652 653 654 655 656 657 658 |
|