228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427 | class WorkflowImageData:
def __init__(
self,
parent_metadata: ImageParentMetadata,
workflow_root_ancestor_metadata: Optional[ImageParentMetadata] = None,
image_reference: Optional[str] = None,
base64_image: Optional[str] = None,
numpy_image: Optional[np.ndarray] = None,
video_metadata: Optional[VideoMetadata] = None,
):
if not base64_image and numpy_image is None and not image_reference:
raise ValueError("Could not initialise empty `WorkflowImageData`.")
self._parent_metadata = parent_metadata
self._workflow_root_ancestor_metadata = (
workflow_root_ancestor_metadata
if workflow_root_ancestor_metadata
else self._parent_metadata
)
self._image_reference = image_reference
self._base64_image = base64_image
self._numpy_image = numpy_image
self._video_metadata = video_metadata
@classmethod
def copy_and_replace(
cls, origin_image_data: "WorkflowImageData", **kwargs
) -> "WorkflowImageData":
"""
Creates new instance of `WorkflowImageData` with updated property.
Properties are passed by kwargs, supported properties are:
* parent_metadata
* workflow_root_ancestor_metadata
* image_reference
* base64_image
* numpy_image
* video_metadata
When more than one from ["numpy_image", "base64_image", "image_reference"] args are
given, they MUST be compliant.
"""
parent_metadata = origin_image_data._parent_metadata
workflow_root_ancestor_metadata = (
origin_image_data._workflow_root_ancestor_metadata
)
image_reference = origin_image_data._image_reference
base64_image = origin_image_data._base64_image
numpy_image = origin_image_data._numpy_image
video_metadata = origin_image_data._video_metadata
if any(k in kwargs for k in ["numpy_image", "base64_image", "image_reference"]):
numpy_image = kwargs.get("numpy_image")
base64_image = kwargs.get("base64_image")
image_reference = kwargs.get("image_reference")
if "parent_metadata" in kwargs:
if workflow_root_ancestor_metadata is parent_metadata:
workflow_root_ancestor_metadata = kwargs["parent_metadata"]
parent_metadata = kwargs["parent_metadata"]
if "workflow_root_ancestor_metadata" in kwargs:
if parent_metadata is workflow_root_ancestor_metadata:
parent_metadata = kwargs["workflow_root_ancestor_metadata"]
workflow_root_ancestor_metadata = kwargs["workflow_root_ancestor_metadata"]
if "video_metadata" in kwargs:
video_metadata = kwargs["video_metadata"]
return cls(
parent_metadata=parent_metadata,
workflow_root_ancestor_metadata=workflow_root_ancestor_metadata,
image_reference=image_reference,
base64_image=base64_image,
numpy_image=numpy_image,
video_metadata=video_metadata,
)
@classmethod
def create_crop(
cls,
origin_image_data: "WorkflowImageData",
crop_identifier: str,
cropped_image: np.ndarray,
offset_x: int,
offset_y: int,
preserve_video_metadata: bool = False,
) -> "WorkflowImageData":
"""
Creates new instance of `WorkflowImageData` being a crop of original image,
making adjustment to all metadata.
"""
parent_metadata = ImageParentMetadata(
parent_id=crop_identifier,
origin_coordinates=OriginCoordinatesSystem(
left_top_x=offset_x,
left_top_y=offset_y,
origin_width=origin_image_data.numpy_image.shape[1],
origin_height=origin_image_data.numpy_image.shape[0],
),
)
workflow_root_ancestor_coordinates = replace(
origin_image_data.workflow_root_ancestor_metadata.origin_coordinates,
left_top_x=origin_image_data.workflow_root_ancestor_metadata.origin_coordinates.left_top_x
+ offset_x,
left_top_y=origin_image_data.workflow_root_ancestor_metadata.origin_coordinates.left_top_y
+ offset_y,
)
workflow_root_ancestor_metadata = ImageParentMetadata(
parent_id=origin_image_data.workflow_root_ancestor_metadata.parent_id,
origin_coordinates=workflow_root_ancestor_coordinates,
)
video_metadata = None
if preserve_video_metadata and origin_image_data._video_metadata is not None:
video_metadata = copy(origin_image_data._video_metadata)
video_metadata.video_identifier = (
f"{video_metadata.video_identifier} | crop: {crop_identifier}"
)
return WorkflowImageData(
parent_metadata=parent_metadata,
workflow_root_ancestor_metadata=workflow_root_ancestor_metadata,
numpy_image=cropped_image,
video_metadata=video_metadata,
)
@property
def parent_metadata(self) -> ImageParentMetadata:
if self._parent_metadata.origin_coordinates is None:
numpy_image = self.numpy_image
origin_coordinates = OriginCoordinatesSystem(
left_top_y=0,
left_top_x=0,
origin_width=numpy_image.shape[1],
origin_height=numpy_image.shape[0],
)
self._parent_metadata = replace(
self._parent_metadata, origin_coordinates=origin_coordinates
)
return self._parent_metadata
@property
def workflow_root_ancestor_metadata(self) -> ImageParentMetadata:
if self._workflow_root_ancestor_metadata.origin_coordinates is None:
numpy_image = self.numpy_image
origin_coordinates = OriginCoordinatesSystem(
left_top_y=0,
left_top_x=0,
origin_width=numpy_image.shape[1],
origin_height=numpy_image.shape[0],
)
self._workflow_root_ancestor_metadata = replace(
self._workflow_root_ancestor_metadata,
origin_coordinates=origin_coordinates,
)
return self._workflow_root_ancestor_metadata
@property
def numpy_image(self) -> np.ndarray:
if self._numpy_image is not None:
return self._numpy_image
if self._base64_image:
self._numpy_image = attempt_loading_image_from_string(self._base64_image)[0]
return self._numpy_image
if self._image_reference.startswith(
"http://"
) or self._image_reference.startswith("https://"):
self._numpy_image = load_image_from_url(value=self._image_reference)
else:
self._numpy_image = cv2.imread(self._image_reference)
return self._numpy_image
@property
def base64_image(self) -> str:
if self._base64_image is not None:
return self._base64_image
numpy_image = self.numpy_image
self._base64_image = base64.b64encode(
encode_image_to_jpeg_bytes(numpy_image, jpeg_quality=95)
).decode("ascii")
return self._base64_image
@property
def video_metadata(self) -> VideoMetadata:
if self._video_metadata is not None:
return self._video_metadata
return VideoMetadata(
video_identifier=self.parent_metadata.parent_id,
frame_number=0,
frame_timestamp=datetime.now(),
fps=30,
comes_from_video_file=None,
)
def to_inference_format(self, numpy_preferred: bool = False) -> Dict[str, Any]:
if numpy_preferred:
return {"type": "numpy_object", "value": self.numpy_image}
if self._image_reference:
if self._image_reference.startswith(
"http://"
) or self._image_reference.startswith("https://"):
return {"type": "url", "value": self._image_reference}
return {"type": "file", "value": self._image_reference}
if self._base64_image:
return {"type": "base64", "value": self.base64_image}
return {"type": "numpy_object", "value": self.numpy_image}
|