Segment anything
SegmentAnything
¶
Bases: RoboflowCoreModel
SegmentAnything class for handling segmentation tasks.
Attributes:
Name | Type | Description |
---|---|---|
sam |
The segmentation model. |
|
predictor |
The predictor for the segmentation model. |
|
ort_session |
ONNX runtime inference session. |
|
embedding_cache |
Cache for embeddings. |
|
image_size_cache |
Cache for image sizes. |
|
embedding_cache_keys |
Keys for the embedding cache. |
|
low_res_logits_cache |
Cache for low resolution logits. |
|
segmentation_cache_keys |
Keys for the segmentation cache. |
Source code in inference/models/sam/segment_anything.py
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
|
__init__(*args, model_id=f'sam/{SAM_VERSION_ID}', **kwargs)
¶
Initializes the SegmentAnything.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
*args
|
Variable length argument list. |
()
|
|
**kwargs
|
Arbitrary keyword arguments. |
{}
|
Source code in inference/models/sam/segment_anything.py
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
|
embed_image(image, image_id=None, **kwargs)
¶
Embeds an image and caches the result if an image_id is provided. If the image has been embedded before and cached, the cached result will be returned.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Any
|
The image to be embedded. The format should be compatible with the preproc_image method. |
required |
image_id
|
Optional[str]
|
An identifier for the image. If provided, the embedding result will be cached with this ID. Defaults to None. |
None
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Tuple[np.ndarray, Tuple[int, int]]: A tuple where the first element is the embedding of the image and the second element is the shape (height, width) of the processed image. |
Notes
- Embeddings and image sizes are cached to improve performance on repeated requests for the same image.
- The cache has a maximum size defined by SAM_MAX_EMBEDDING_CACHE_SIZE. When the cache exceeds this size, the oldest entries are removed.
Example
img_array = ... # some image array embed_image(img_array, image_id="sample123") (array([...]), (224, 224))
Source code in inference/models/sam/segment_anything.py
80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 |
|
get_infer_bucket_file_list()
¶
Gets the list of files required for inference.
Returns:
Type | Description |
---|---|
List[str]
|
List[str]: List of file names. |
Source code in inference/models/sam/segment_anything.py
72 73 74 75 76 77 78 |
|
infer_from_request(request)
¶
Performs inference based on the request type.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
request
|
SamInferenceRequest
|
The inference request. |
required |
Returns:
Type | Description |
---|---|
Union[SamEmbeddingResponse, SamSegmentationResponse]: The inference response. |
Source code in inference/models/sam/segment_anything.py
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
|
preproc_image(image)
¶
Preprocesses an image.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
InferenceRequestImage
|
The image to preprocess. |
required |
Returns:
Type | Description |
---|---|
np.array: The preprocessed image. |
Source code in inference/models/sam/segment_anything.py
172 173 174 175 176 177 178 179 180 181 182 |
|
segment_image(image, embeddings=None, embeddings_format='json', has_mask_input=False, image_id=None, mask_input=None, mask_input_format='json', orig_im_size=None, point_coords=[], point_labels=[], use_mask_input_cache=True, **kwargs)
¶
Segments an image based on provided embeddings, points, masks, or cached results. If embeddings are not directly provided, the function can derive them from the input image or cache.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
image
|
Any
|
The image to be segmented. |
required |
embeddings
|
Optional[Union[ndarray, List[List[float]]]]
|
The embeddings of the image. Defaults to None, in which case the image is used to compute embeddings. |
None
|
embeddings_format
|
Optional[str]
|
Format of the provided embeddings; either 'json' or 'binary'. Defaults to 'json'. |
'json'
|
has_mask_input
|
Optional[bool]
|
Specifies whether mask input is provided. Defaults to False. |
False
|
image_id
|
Optional[str]
|
A cached identifier for the image. Useful for accessing cached embeddings or masks. |
None
|
mask_input
|
Optional[Union[ndarray, List[List[List[float]]]]]
|
Input mask for the image. |
None
|
mask_input_format
|
Optional[str]
|
Format of the provided mask input; either 'json' or 'binary'. Defaults to 'json'. |
'json'
|
orig_im_size
|
Optional[List[int]]
|
Original size of the image when providing embeddings directly. |
None
|
point_coords
|
Optional[List[List[float]]]
|
Coordinates of points in the image. Defaults to an empty list. |
[]
|
point_labels
|
Optional[List[int]]
|
Labels associated with the provided points. Defaults to an empty list. |
[]
|
use_mask_input_cache
|
Optional[bool]
|
Flag to determine if cached mask input should be used. Defaults to True. |
True
|
**kwargs
|
Additional keyword arguments. |
{}
|
Returns:
Type | Description |
---|---|
Tuple[np.ndarray, np.ndarray]: A tuple where the first element is the segmentation masks of the image and the second element is the low resolution segmentation masks. |
Raises:
Type | Description |
---|---|
ValueError
|
If necessary inputs are missing or inconsistent. |
Notes
- Embeddings, segmentations, and low-resolution logits can be cached to improve performance on repeated requests for the same image.
- The cache has a maximum size defined by SAM_MAX_EMBEDDING_CACHE_SIZE. When the cache exceeds this size, the oldest entries are removed.
Source code in inference/models/sam/segment_anything.py
184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 |
|