Bases: KeypointsDetectionBaseOnnxRoboflowInferenceModel
Roboflow ONNX keypoints detection model (Implements an object detection specific infer method).
This class is responsible for performing keypoints detection using the YOLOv8 model
with ONNX runtime.
Attributes:
Name |
Type |
Description |
weights_file |
str
|
Path to the ONNX weights file.
|
Methods:
Name |
Description |
predict |
Performs object detection on the given image using the ONNX session.
|
Source code in inference/models/yolov8/yolov8_keypoints_detection.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59 | class YOLOv8KeypointsDetection(KeypointsDetectionBaseOnnxRoboflowInferenceModel):
"""Roboflow ONNX keypoints detection model (Implements an object detection specific infer method).
This class is responsible for performing keypoints detection using the YOLOv8 model
with ONNX runtime.
Attributes:
weights_file (str): Path to the ONNX weights file.
Methods:
predict: Performs object detection on the given image using the ONNX session.
"""
@property
def weights_file(self) -> str:
"""Gets the weights file for the YOLOv8 model.
Returns:
str: Path to the ONNX weights file.
"""
return "weights.onnx"
def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, ...]:
"""Performs object detection on the given image using the ONNX session.
Args:
img_in (np.ndarray): Input image as a NumPy array.
Returns:
Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores.
"""
predictions = self.onnx_session.run(None, {self.input_name: img_in})[0]
predictions = predictions.transpose(0, 2, 1)
boxes = predictions[:, :, :4]
number_of_classes = len(self.get_class_names)
class_confs = predictions[:, :, 4 : 4 + number_of_classes]
keypoints_detections = predictions[:, :, 4 + number_of_classes :]
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2)
bboxes_predictions = np.concatenate(
[boxes, confs, class_confs, keypoints_detections], axis=2
)
return (bboxes_predictions,)
def keypoints_count(self) -> int:
"""Returns the number of keypoints in the model."""
if self.keypoints_metadata is None:
raise ModelArtefactError("Keypoints metadata not available.")
return superset_keypoints_count(self.keypoints_metadata)
|
weights_file: str
property
Gets the weights file for the YOLOv8 model.
Returns:
Name | Type |
Description |
str |
str
|
Path to the ONNX weights file.
|
keypoints_count()
Returns the number of keypoints in the model.
Source code in inference/models/yolov8/yolov8_keypoints_detection.py
| def keypoints_count(self) -> int:
"""Returns the number of keypoints in the model."""
if self.keypoints_metadata is None:
raise ModelArtefactError("Keypoints metadata not available.")
return superset_keypoints_count(self.keypoints_metadata)
|
predict(img_in, **kwargs)
Performs object detection on the given image using the ONNX session.
Parameters:
Name |
Type |
Description |
Default |
img_in
|
ndarray
|
Input image as a NumPy array.
|
required
|
Returns:
Type |
Description |
Tuple[ndarray, ...]
|
Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores.
|
Source code in inference/models/yolov8/yolov8_keypoints_detection.py
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53 | def predict(self, img_in: np.ndarray, **kwargs) -> Tuple[np.ndarray, ...]:
"""Performs object detection on the given image using the ONNX session.
Args:
img_in (np.ndarray): Input image as a NumPy array.
Returns:
Tuple[np.ndarray]: NumPy array representing the predictions, including boxes, confidence scores, and class confidence scores.
"""
predictions = self.onnx_session.run(None, {self.input_name: img_in})[0]
predictions = predictions.transpose(0, 2, 1)
boxes = predictions[:, :, :4]
number_of_classes = len(self.get_class_names)
class_confs = predictions[:, :, 4 : 4 + number_of_classes]
keypoints_detections = predictions[:, :, 4 + number_of_classes :]
confs = np.expand_dims(np.max(class_confs, axis=2), axis=2)
bboxes_predictions = np.concatenate(
[boxes, confs, class_confs, keypoints_detections], axis=2
)
return (bboxes_predictions,)
|