Skip to content

container_service

InferServerContainer dataclass

Source code in inference/enterprise/device_manager/container_service.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
@dataclass
class InferServerContainer:
    status: str
    id: str
    port: int
    host: str
    startup_time: float
    version: str

    def __init__(self, docker_container, details):
        self.container = docker_container
        self.status = details.get("status")
        self.id = details.get("uuid")
        self.port = details.get("port")
        self.host = details.get("host")
        self.version = details.get("version")
        t = details.get("startup_time_ts").split(".")[0]
        self.startup_time = (
            datetime.strptime(t, "%Y-%m-%dT%H:%M:%S").timestamp()
            if t is not None
            else datetime.now().timestamp()
        )

    def kill(self):
        try:
            self.container.kill()
            return True, None
        except Exception as e:
            logger.error(e)
            return False, None

    def restart(self):
        try:
            self.container.restart()
            return True, None
        except Exception as e:
            logger.error(e)
            return False, None

    def stop(self):
        try:
            self.container.stop()
            return True, None
        except Exception as e:
            logger.error(e)
            return False, None

    def start(self):
        try:
            self.container.start()
            return True, None
        except Exception as e:
            logger.error(e)
            return False, None

    def inspect(self):
        try:
            info = requests.get(f"http://{self.host}:{self.port}/info").json()
            return True, info
        except Exception as e:
            logger.error(e)
            return False, None

    def snapshot(self):
        try:
            snapshot = self.get_latest_inferred_images()
            snapshot.update({"container_id": self.id})
            return True, snapshot
        except Exception as e:
            logger.error(e)
            return False, None

    def get_latest_inferred_images(self, max=4):
        """
        Retrieve the latest inferred images and associated information for this container.

        This method fetches the most recent inferred images within the time interval defined by METRICS_INTERVAL.

        Args:
            max (int, optional): The maximum number of inferred images to retrieve.
                Defaults to 4.

        Returns:
            dict: A dictionary where each key represents a model ID associated with this
            container, and the corresponding value is a list of dictionaries containing
            information about the latest inferred images. Each dictionary has the following keys:
            - "image" (str): The base64-encoded image data.
            - "dimensions" (dict): Image dimensions (width and height).
            - "predictions" (list): A list of predictions or results associated with the image.

        Notes:
            - This method uses the global constant METRICS_INTERVAL to specify the time interval.
        """

        now = time.time()
        start = now - METRICS_INTERVAL
        api_keys = get_cache_model_items().get(self.id, dict()).keys()
        model_ids = []
        for api_key in api_keys:
            mids = get_cache_model_items().get(self.id, dict()).get(api_key, [])
            model_ids.extend(mids)
        num_images = 0
        latest_inferred_images = dict()
        for model_id in model_ids:
            if num_images >= max:
                break
            latest_reqs = cache.zrangebyscore(
                f"inference:{self.id}:{model_id}", min=start, max=now
            )
            for req in latest_reqs:
                images = req["request"]["image"]
                image_dims = req.get("response", {}).get("image", dict())
                predictions = req.get("response", {}).get("predictions", [])
                if images is None or len(images) == 0:
                    continue
                if type(images) is not list:
                    images = [images]
                for image in images:
                    value = None
                    if image["type"] == "base64":
                        value = image["value"]
                    else:
                        loaded_image = load_image_rgb(image)
                        image_bytes = loaded_image.tobytes()
                        image_base64 = base64.b64encode(image_bytes).decode("utf-8")
                        value = image_base64
                    if latest_inferred_images.get(model_id) is None:
                        latest_inferred_images[model_id] = []
                    inference = dict(
                        image=value, dimensions=image_dims, predictions=predictions
                    )
                    latest_inferred_images[model_id].append(inference)
                    num_images += 1
        return latest_inferred_images

    def get_startup_config(self):
        """
        Get the startup configuration for this container.

        Returns:
            dict: A dictionary containing the startup configuration for this container.
        """
        env_vars = self.container.attrs.get("Config", {}).get("Env", {})
        port_bindings = self.container.attrs.get("HostConfig", {}).get(
            "PortBindings", {}
        )
        detached = self.container.attrs.get("HostConfig", {}).get("Detached", False)
        image = self.container.attrs.get("Config", {}).get("Image", "")
        privileged = self.container.attrs.get("HostConfig", {}).get("Privileged", False)
        labels = self.container.attrs.get("Config", {}).get("Labels", {})
        env = []
        for var in env_vars:
            name, value = var.split("=")
            env.append(f"{name}={value}")
        return {
            "env": env,
            "port_bindings": port_bindings,
            "detach": detached,
            "image": image,
            "privileged": privileged,
            "labels": labels,
            # TODO: add device requests
        }

get_latest_inferred_images(max=4)

Retrieve the latest inferred images and associated information for this container.

This method fetches the most recent inferred images within the time interval defined by METRICS_INTERVAL.

Parameters:

Name Type Description Default
max int

The maximum number of inferred images to retrieve. Defaults to 4.

4

Returns:

Name Type Description
dict

A dictionary where each key represents a model ID associated with this

container, and the corresponding value is a list of dictionaries containing

information about the latest inferred images. Each dictionary has the following keys:

  • "image" (str): The base64-encoded image data.
  • "dimensions" (dict): Image dimensions (width and height).
  • "predictions" (list): A list of predictions or results associated with the image.
Notes
  • This method uses the global constant METRICS_INTERVAL to specify the time interval.
Source code in inference/enterprise/device_manager/container_service.py
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
def get_latest_inferred_images(self, max=4):
    """
    Retrieve the latest inferred images and associated information for this container.

    This method fetches the most recent inferred images within the time interval defined by METRICS_INTERVAL.

    Args:
        max (int, optional): The maximum number of inferred images to retrieve.
            Defaults to 4.

    Returns:
        dict: A dictionary where each key represents a model ID associated with this
        container, and the corresponding value is a list of dictionaries containing
        information about the latest inferred images. Each dictionary has the following keys:
        - "image" (str): The base64-encoded image data.
        - "dimensions" (dict): Image dimensions (width and height).
        - "predictions" (list): A list of predictions or results associated with the image.

    Notes:
        - This method uses the global constant METRICS_INTERVAL to specify the time interval.
    """

    now = time.time()
    start = now - METRICS_INTERVAL
    api_keys = get_cache_model_items().get(self.id, dict()).keys()
    model_ids = []
    for api_key in api_keys:
        mids = get_cache_model_items().get(self.id, dict()).get(api_key, [])
        model_ids.extend(mids)
    num_images = 0
    latest_inferred_images = dict()
    for model_id in model_ids:
        if num_images >= max:
            break
        latest_reqs = cache.zrangebyscore(
            f"inference:{self.id}:{model_id}", min=start, max=now
        )
        for req in latest_reqs:
            images = req["request"]["image"]
            image_dims = req.get("response", {}).get("image", dict())
            predictions = req.get("response", {}).get("predictions", [])
            if images is None or len(images) == 0:
                continue
            if type(images) is not list:
                images = [images]
            for image in images:
                value = None
                if image["type"] == "base64":
                    value = image["value"]
                else:
                    loaded_image = load_image_rgb(image)
                    image_bytes = loaded_image.tobytes()
                    image_base64 = base64.b64encode(image_bytes).decode("utf-8")
                    value = image_base64
                if latest_inferred_images.get(model_id) is None:
                    latest_inferred_images[model_id] = []
                inference = dict(
                    image=value, dimensions=image_dims, predictions=predictions
                )
                latest_inferred_images[model_id].append(inference)
                num_images += 1
    return latest_inferred_images

get_startup_config()

Get the startup configuration for this container.

Returns:

Name Type Description
dict

A dictionary containing the startup configuration for this container.

Source code in inference/enterprise/device_manager/container_service.py
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
def get_startup_config(self):
    """
    Get the startup configuration for this container.

    Returns:
        dict: A dictionary containing the startup configuration for this container.
    """
    env_vars = self.container.attrs.get("Config", {}).get("Env", {})
    port_bindings = self.container.attrs.get("HostConfig", {}).get(
        "PortBindings", {}
    )
    detached = self.container.attrs.get("HostConfig", {}).get("Detached", False)
    image = self.container.attrs.get("Config", {}).get("Image", "")
    privileged = self.container.attrs.get("HostConfig", {}).get("Privileged", False)
    labels = self.container.attrs.get("Config", {}).get("Labels", {})
    env = []
    for var in env_vars:
        name, value = var.split("=")
        env.append(f"{name}={value}")
    return {
        "env": env,
        "port_bindings": port_bindings,
        "detach": detached,
        "image": image,
        "privileged": privileged,
        "labels": labels,
        # TODO: add device requests
    }

get_container_by_id(id)

Gets an inference server container by its id

Parameters:

Name Type Description Default
id string

The id of the container

required

Returns:

Name Type Description
container

The container object if found, None otherwise

Source code in inference/enterprise/device_manager/container_service.py
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
def get_container_by_id(id):
    """
    Gets an inference server container by its id

    Args:
        id (string): The id of the container

    Returns:
        container: The container object if found, None otherwise
    """
    containers = get_inference_containers()
    for c in containers:
        if c.id == id:
            return c
    return None

get_container_ids()

Gets the ids of the inference server containers

Returns:

Name Type Description
list

A list of container ids

Source code in inference/enterprise/device_manager/container_service.py
274
275
276
277
278
279
280
281
282
def get_container_ids():
    """
    Gets the ids of the inference server containers

    Returns:
        list: A list of container ids
    """
    containers = get_inference_containers()
    return [c.id for c in containers]

get_inference_containers()

Discovers inference server containers running on the host and parses their information into a list of InferServerContainer objects

Source code in inference/enterprise/device_manager/container_service.py
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
def get_inference_containers():
    """
    Discovers inference server containers running on the host
    and parses their information into a list of InferServerContainer objects
    """
    client = docker.from_env()
    containers = client.containers.list()
    inference_containers = []
    for c in containers:
        if is_inference_server_container(c):
            details = parse_container_info(c)
            info = {}
            try:
                info = requests.get(
                    f"http://{details['host']}:{details['port']}/info", timeout=3
                ).json()
            except Exception as e:
                logger.error(f"Failed to get info from container {c.id} {details} {e}")
            details.update(info)
            infer_container = InferServerContainer(c, details)
            if len(inference_containers) == 0:
                inference_containers.append(infer_container)
                continue
            for ic in inference_containers:
                if ic.id == infer_container.id:
                    continue
                inference_containers.append(infer_container)
    return inference_containers

is_inference_server_container(container)

Checks if a container is an inference server container

Parameters:

Name Type Description Default
container any

A container object from the Docker SDK

required

Returns:

Name Type Description
boolean

True if the container is an inference server container, False otherwise

Source code in inference/enterprise/device_manager/container_service.py
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def is_inference_server_container(container):
    """
    Checks if a container is an inference server container

    Args:
        container (any): A container object from the Docker SDK

    Returns:
        boolean: True if the container is an inference server container, False otherwise
    """
    image_tags = container.image.tags
    for t in image_tags:
        if t.startswith("roboflow/roboflow-inference-server"):
            return True
    return False

parse_container_info(c)

Parses the container information into a dictionary

Parameters:

Name Type Description Default
c any

Docker SDK Container object

required

Returns:

Name Type Description
dict

A dictionary containing the container information

Source code in inference/enterprise/device_manager/container_service.py
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
def parse_container_info(c):
    """
    Parses the container information into a dictionary

    Args:
        c (any): Docker SDK Container object

    Returns:
        dict: A dictionary containing the container information
    """
    env = c.attrs.get("Config", {}).get("Env", {})
    info = {"container_id": c.id, "port": 9001, "host": "0.0.0.0"}
    for var in env:
        if var.startswith("PORT="):
            info["port"] = var.split("=")[1]
        elif var.startswith("HOST="):
            info["host"] = var.split("=")[1]
    status = c.attrs.get("State", {}).get("Status")
    if status:
        info["status"] = status
    container_name = c.attrs.get("Name")
    if container_name:
        info["container_name_on_host"] = container_name
    startup_time = c.attrs.get("State", {}).get("StartedAt")
    if startup_time:
        info["startup_time_ts"] = startup_time
    return info