Depth Estimation¶
Class: DepthEstimationBlockV1
Source: inference.core.workflows.core_steps.models.foundation.depth_estimation.v1.DepthEstimationBlockV1
π― This workflow block performs depth estimation on images using Apple's DepthPro model. It analyzes the spatial relationships
and depth information in images to create a depth map where:
π Each pixel's value represents its relative distance from the camera
π Lower values (darker colors) indicate closer objects
π Higher values (lighter colors) indicate further objects
The model outputs:
1. πΊοΈ A depth map showing the relative distances of objects in the scene
2. π The camera's field of view (in degrees)
3. π¬ The camera's focal length
This is particularly useful for:
- ποΈ Understanding 3D structure from 2D images
- π¨ Creating depth-aware visualizations
- π Analyzing spatial relationships in scenes
- πΆοΈ Applications in augmented reality and 3D reconstruction
β‘ The model runs efficiently on Apple Silicon (M1-M4) using Metal Performance Shaders (MPS) for accelerated inference.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/depth_estimation@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | β |
model_version |
str |
The Depth Estimation model to be used for inference.. | β |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Depth Estimation
in version v1
.
- inputs:
Stability AI Inpainting
,Label Visualization
,Depth Estimation
,Corner Visualization
,Triangle Visualization
,Background Color Visualization
,Image Blur
,Polygon Zone Visualization
,Model Comparison Visualization
,Line Counter Visualization
,Camera Focus
,Circle Visualization
,Perspective Correction
,Relative Static Crop
,Grid Visualization
,Stability AI Image Generation
,Trace Visualization
,Image Slicer
,Blur Visualization
,Classification Label Visualization
,Image Convert Grayscale
,Image Preprocessing
,SIFT Comparison
,Stitch Images
,Reference Path Visualization
,Stability AI Outpainting
,Polygon Visualization
,Camera Calibration
,Mask Visualization
,SIFT
,Bounding Box Visualization
,Image Threshold
,Keypoint Visualization
,Ellipse Visualization
,Crop Visualization
,Color Visualization
,Pixelate Visualization
,Image Slicer
,Dynamic Crop
,Image Contours
,Absolute Static Crop
,Halo Visualization
,Dot Visualization
- outputs:
Florence-2 Model
,Label Visualization
,Florence-2 Model
,Depth Estimation
,Triangle Visualization
,CogVLM
,Image Blur
,OCR Model
,Model Comparison Visualization
,Line Counter Visualization
,Circle Visualization
,Relative Static Crop
,Barcode Detection
,Detections Stitch
,Trace Visualization
,Multi-Label Classification Model
,Object Detection Model
,Clip Comparison
,Gaze Detection
,Stitch Images
,Dominant Color
,Reference Path Visualization
,Llama 3.2 Vision
,Polygon Visualization
,Time in Zone
,Segment Anything 2 Model
,Roboflow Dataset Upload
,Single-Label Classification Model
,SIFT
,Image Threshold
,CLIP Embedding Model
,VLM as Classifier
,Keypoint Visualization
,Crop Visualization
,Image Slicer
,Color Visualization
,Ellipse Visualization
,Google Gemini
,Dynamic Crop
,OpenAI
,Instance Segmentation Model
,Multi-Label Classification Model
,Dot Visualization
,Instance Segmentation Model
,Roboflow Dataset Upload
,Keypoint Detection Model
,SmolVLM2
,Keypoint Detection Model
,Stability AI Inpainting
,Google Vision OCR
,Single-Label Classification Model
,Template Matching
,Corner Visualization
,Background Color Visualization
,Polygon Zone Visualization
,Camera Focus
,Stability AI Image Generation
,Perspective Correction
,VLM as Detector
,Image Slicer
,OpenAI
,Qwen2.5-VL
,Clip Comparison
,Blur Visualization
,Classification Label Visualization
,Image Convert Grayscale
,Image Preprocessing
,SIFT Comparison
,Byte Tracker
,Pixel Color Count
,Detections Stabilizer
,OpenAI
,YOLO-World Model
,Stability AI Outpainting
,Perception Encoder Embedding Model
,QR Code Detection
,Anthropic Claude
,Moondream2
,Camera Calibration
,Buffer
,Mask Visualization
,Bounding Box Visualization
,Pixelate Visualization
,Object Detection Model
,Image Contours
,Absolute Static Crop
,Halo Visualization
,LMM For Classification
,SIFT Comparison
,VLM as Detector
,LMM
,VLM as Classifier
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Depth Estimation
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..
-
output
image
(image
): Image in workflows.normalized_depth
(numpy_array
): Numpy array.
Example JSON definition of step Depth Estimation
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/depth_estimation@v1",
"images": "$inputs.image",
"model_version": "depth-anything-v2/small"
}