Depth Estimation¶
Class: DepthEstimationBlockV1
Source: inference.core.workflows.core_steps.models.foundation.depth_estimation.v1.DepthEstimationBlockV1
π― This workflow block performs depth estimation on images using Apple's DepthPro model. It analyzes the spatial relationships
and depth information in images to create a depth map where:
π Each pixel's value represents its relative distance from the camera
π Lower values (darker colors) indicate closer objects
π Higher values (lighter colors) indicate further objects
The model outputs:
1. πΊοΈ A depth map showing the relative distances of objects in the scene
2. π The camera's field of view (in degrees)
3. π¬ The camera's focal length
This is particularly useful for:
- ποΈ Understanding 3D structure from 2D images
- π¨ Creating depth-aware visualizations
- π Analyzing spatial relationships in scenes
- πΆοΈ Applications in augmented reality and 3D reconstruction
β‘ The model runs efficiently on Apple Silicon (M1-M4) using Metal Performance Shaders (MPS) for accelerated inference.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/depth_estimation@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | β |
model_version |
str |
The Depth Estimation model to be used for inference.. | β |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Depth Estimation
in version v1
.
- inputs:
Image Convert Grayscale
,Absolute Static Crop
,Relative Static Crop
,Label Visualization
,Line Counter Visualization
,Background Color Visualization
,Stitch Images
,Camera Focus
,Image Contours
,Image Preprocessing
,Image Slicer
,Reference Path Visualization
,SIFT Comparison
,Triangle Visualization
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,Depth Estimation
,Bounding Box Visualization
,Image Blur
,Perspective Correction
,Halo Visualization
,Ellipse Visualization
,Color Visualization
,Crop Visualization
,Dot Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Classification Label Visualization
,Camera Calibration
,Stability AI Image Generation
,Polygon Visualization
,Trace Visualization
,Corner Visualization
,Image Threshold
,Blur Visualization
,Image Slicer
,Stability AI Inpainting
,Mask Visualization
,SIFT
,Circle Visualization
,Dynamic Crop
- outputs:
LMM
,Buffer
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Relative Static Crop
,Line Counter Visualization
,Gaze Detection
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Multi-Label Classification Model
,Depth Estimation
,Google Vision OCR
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Dot Visualization
,Model Comparison Visualization
,Instance Segmentation Model
,Classification Label Visualization
,Camera Calibration
,Qwen2.5-VL
,Stability AI Image Generation
,Trace Visualization
,Time in Zone
,Corner Visualization
,Image Threshold
,Blur Visualization
,QR Code Detection
,CogVLM
,Stability AI Inpainting
,Keypoint Detection Model
,SIFT
,Circle Visualization
,OpenAI
,Moondream2
,Florence-2 Model
,Label Visualization
,Stitch Images
,Image Preprocessing
,Detections Stitch
,Template Matching
,Byte Tracker
,SmolVLM2
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Bounding Box Visualization
,CLIP Embedding Model
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Image Blur
,Color Visualization
,Barcode Detection
,Pixelate Visualization
,Single-Label Classification Model
,SIFT Comparison
,Pixel Color Count
,YOLO-World Model
,VLM as Detector
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,Image Slicer
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Depth Estimation
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..
-
output
image
(image
): Image in workflows.normalized_depth
(numpy_array
): Numpy array.
Example JSON definition of step Depth Estimation
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/depth_estimation@v1",
"images": "$inputs.image",
"model_version": "depth-anything-v2/small"
}