Pixel Color Count¶
Class: PixelationCountBlockV1
Source: inference.core.workflows.core_steps.classical_cv.pixel_color_count.v1.PixelationCountBlockV1
Count the number of pixels that match a specific color within a given tolerance.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/pixel_color_count@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
target_color |
Union[Tuple[int, int, int], str] |
Target color to count in the image. Can be a hex string (like '#431112') RGB string (like '(128, 32, 64)') or a RGB tuple (like (18, 17, 67)).. | ✅ |
tolerance |
int |
Tolerance for color matching.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Pixel Color Count
in version v1
.
- inputs:
LMM
,Roboflow Custom Metadata
,Image Convert Grayscale
,Absolute Static Crop
,Multi-Label Classification Model
,Distance Measurement
,Relative Static Crop
,Line Counter Visualization
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Line Counter
,Depth Estimation
,Google Vision OCR
,Roboflow Dataset Upload
,Llama 3.2 Vision
,Clip Comparison
,Perspective Correction
,Crop Visualization
,Webhook Sink
,Dot Visualization
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Camera Calibration
,Slack Notification
,Stability AI Image Generation
,Trace Visualization
,Line Counter
,Corner Visualization
,Image Threshold
,Blur Visualization
,Local File Sink
,CogVLM
,Stability AI Inpainting
,SIFT
,Circle Visualization
,OpenAI
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Template Matching
,Grid Visualization
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,SIFT Comparison
,Pixel Color Count
,VLM as Detector
,Roboflow Dataset Upload
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Image Slicer
,Model Monitoring Inference Aggregator
,Mask Visualization
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
- outputs:
Detection Offset
,Absolute Static Crop
,Twilio SMS Notification
,Line Counter Visualization
,Label Visualization
,Stitch Images
,Image Preprocessing
,Image Contours
,Image Slicer
,Reference Path Visualization
,Instance Segmentation Model
,Byte Tracker
,SIFT Comparison
,Keypoint Detection Model
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Grid Visualization
,Dominant Color
,Keypoint Visualization
,Byte Tracker
,Stitch OCR Detections
,Dynamic Zone
,Bounding Box Visualization
,Image Blur
,Perspective Correction
,Halo Visualization
,Object Detection Model
,Ellipse Visualization
,Color Visualization
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Pixelate Visualization
,Email Notification
,SIFT Comparison
,Classification Label Visualization
,Instance Segmentation Model
,Pixel Color Count
,Slack Notification
,Polygon Visualization
,Trace Visualization
,Corner Visualization
,Image Threshold
,Blur Visualization
,Image Slicer
,Keypoint Detection Model
,Mask Visualization
,Anthropic Claude
,Identify Outliers
,Circle Visualization
,Byte Tracker
,Detections Consensus
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Pixel Color Count
in version v1
has.
Bindings
-
input
-
output
matching_pixels_count
(integer
): Integer value.
Example JSON definition of step Pixel Color Count
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/pixel_color_count@v1",
"image": "$inputs.image",
"target_color": "#431112",
"tolerance": 10
}