SIFT Comparison¶
v2¶
Class: SIFTComparisonBlockV2
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.classical_cv.sift_comparison.v2.SIFTComparisonBlockV2
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Compare SIFT descriptors from multiple images using FLANN-based matcher.
This block is useful for determining if multiple images match based on their SIFT descriptors.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/sift_comparison@v2
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
good_matches_threshold |
int |
Threshold for the number of good matches to consider the images as matching. | ✅ |
ratio_threshold |
float |
Ratio threshold for the ratio test, which is used to filter out poor matches by comparing the distance of the closest match to the distance of the second closest match. A lower ratio indicates stricter filtering.. | ✅ |
matcher |
str |
Matcher to use for comparing the SIFT descriptors. | ✅ |
visualize |
bool |
Whether to visualize the keypoints and matches between the two images. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to SIFT Comparison
in version v2
.
- inputs:
LMM
,Roboflow Custom Metadata
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Distance Measurement
,Relative Static Crop
,Line Counter Visualization
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Line Counter
,Depth Estimation
,Google Vision OCR
,Roboflow Dataset Upload
,Llama 3.2 Vision
,Dynamic Zone
,Clip Comparison
,Perspective Correction
,Crop Visualization
,Identify Changes
,Webhook Sink
,Dot Visualization
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Camera Calibration
,Slack Notification
,Stability AI Image Generation
,Trace Visualization
,Line Counter
,Corner Visualization
,Image Threshold
,Blur Visualization
,Local File Sink
,CogVLM
,Stability AI Inpainting
,SIFT
,Circle Visualization
,JSON Parser
,OpenAI
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Template Matching
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,SIFT Comparison
,Pixel Color Count
,VLM as Detector
,Roboflow Dataset Upload
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Image Slicer
,Model Monitoring Inference Aggregator
,Mask Visualization
,Anthropic Claude
,Identify Outliers
,Florence-2 Model
,VLM as Classifier
,Dynamic Crop
,Detections Consensus
- outputs:
LMM
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Line Counter Visualization
,OCR Model
,Image Slicer
,Reference Path Visualization
,Triangle Visualization
,Multi-Label Classification Model
,Byte Tracker
,Google Vision OCR
,Llama 3.2 Vision
,Dynamic Zone
,Clip Comparison
,Perspective Correction
,Dot Visualization
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Instance Segmentation Model
,Slack Notification
,Stability AI Image Generation
,Time in Zone
,Time in Zone
,Trace Visualization
,Blur Visualization
,CogVLM
,Stability AI Inpainting
,Circle Visualization
,OpenAI
,Moondream2
,Stitch Images
,Byte Tracker
,SmolVLM2
,Grid Visualization
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,Bounding Box Visualization
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Single-Label Classification Model
,Pixel Color Count
,VLM as Detector
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Single-Label Classification Model
,VLM as Classifier
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Byte Tracker
,Detections Consensus
,Detection Offset
,Roboflow Custom Metadata
,Buffer
,Image Convert Grayscale
,Relative Static Crop
,Gaze Detection
,Background Color Visualization
,Camera Focus
,Image Contours
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Detections Stabilizer
,Depth Estimation
,Roboflow Dataset Upload
,Object Detection Model
,Crop Visualization
,Webhook Sink
,Identify Changes
,Camera Calibration
,Qwen2.5-VL
,Corner Visualization
,Image Threshold
,QR Code Detection
,Keypoint Detection Model
,SIFT
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Image Preprocessing
,Detections Stitch
,Template Matching
,LMM For Classification
,Stitch OCR Detections
,Image Blur
,CLIP Embedding Model
,Color Visualization
,Barcode Detection
,Pixelate Visualization
,SIFT Comparison
,YOLO-World Model
,Polygon Visualization
,Model Monitoring Inference Aggregator
,Image Slicer
,Anthropic Claude
,Identify Outliers
,Florence-2 Model
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
SIFT Comparison
in version v2
has.
Bindings
-
input
input_1
(Union[image
,numpy_array
]): Reference to Image or SIFT descriptors from the first image to compare.input_2
(Union[image
,numpy_array
]): Reference to Image or SIFT descriptors from the second image to compare.good_matches_threshold
(integer
): Threshold for the number of good matches to consider the images as matching.ratio_threshold
(float_zero_to_one
): Ratio threshold for the ratio test, which is used to filter out poor matches by comparing the distance of the closest match to the distance of the second closest match. A lower ratio indicates stricter filtering..matcher
(string
): Matcher to use for comparing the SIFT descriptors.visualize
(boolean
): Whether to visualize the keypoints and matches between the two images.
-
output
images_match
(boolean
): Boolean flag.good_matches_count
(integer
): Integer value.keypoints_1
(image_keypoints
): Image keypoints detected by classical Computer Vision method.descriptors_1
(numpy_array
): Numpy array.keypoints_2
(image_keypoints
): Image keypoints detected by classical Computer Vision method.descriptors_2
(numpy_array
): Numpy array.visualization_1
(image
): Image in workflows.visualization_2
(image
): Image in workflows.visualization_matches
(image
): Image in workflows.
Example JSON definition of step SIFT Comparison
in version v2
{
"name": "<your_step_name_here>",
"type": "roboflow_core/sift_comparison@v2",
"input_1": "$inputs.image1",
"input_2": "$inputs.image2",
"good_matches_threshold": 50,
"ratio_threshold": 0.7,
"matcher": "FlannBasedMatcher",
"visualize": true
}
v1¶
Class: SIFTComparisonBlockV1
(there are multiple versions of this block)
Source: inference.core.workflows.core_steps.classical_cv.sift_comparison.v1.SIFTComparisonBlockV1
Warning: This block has multiple versions. Please refer to the specific version for details. You can learn more about how versions work here: Versioning
Compare SIFT descriptors from multiple images using FLANN-based matcher.
This block is useful for determining if multiple images match based on their SIFT descriptors.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/sift_comparison@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
good_matches_threshold |
int |
Threshold for the number of good matches to consider the images as matching. | ✅ |
ratio_threshold |
float |
Ratio threshold for the ratio test, which is used to filter out poor matches by comparing the distance of the closest match to the distance of the second closest match. A lower ratio indicates stricter filtering.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to SIFT Comparison
in version v1
.
- inputs:
SIFT Comparison
,SIFT Comparison
,Line Counter
,Pixel Color Count
,Distance Measurement
,Depth Estimation
,SIFT
,Image Contours
,Line Counter
,Template Matching
- outputs:
Detection Offset
,Roboflow Custom Metadata
,Absolute Static Crop
,Multi-Label Classification Model
,Line Counter Visualization
,Gaze Detection
,Background Color Visualization
,Image Contours
,Image Slicer
,Reference Path Visualization
,Instance Segmentation Model
,Keypoint Detection Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Multi-Label Classification Model
,Byte Tracker
,Roboflow Dataset Upload
,Dynamic Zone
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Email Notification
,Model Comparison Visualization
,Classification Label Visualization
,Instance Segmentation Model
,Slack Notification
,Time in Zone
,Trace Visualization
,Time in Zone
,Corner Visualization
,Image Threshold
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Template Matching
,Byte Tracker
,Grid Visualization
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,Halo Visualization
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,Single-Label Classification Model
,SIFT Comparison
,Pixel Color Count
,Roboflow Dataset Upload
,Polygon Visualization
,Segment Anything 2 Model
,Single-Label Classification Model
,Image Slicer
,Model Monitoring Inference Aggregator
,Mask Visualization
,Anthropic Claude
,Identify Outliers
,Byte Tracker
,Detections Consensus
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
SIFT Comparison
in version v1
has.
Bindings
-
input
descriptor_1
(numpy_array
): Reference to SIFT descriptors from the first image to compare.descriptor_2
(numpy_array
): Reference to SIFT descriptors from the second image to compare.good_matches_threshold
(integer
): Threshold for the number of good matches to consider the images as matching.ratio_threshold
(integer
): Ratio threshold for the ratio test, which is used to filter out poor matches by comparing the distance of the closest match to the distance of the second closest match. A lower ratio indicates stricter filtering..
-
output
Example JSON definition of step SIFT Comparison
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/sift_comparison@v1",
"descriptor_1": "$steps.sift.descriptors",
"descriptor_2": "$steps.sift.descriptors",
"good_matches_threshold": 50,
"ratio_threshold": 0.7
}