YOLO-World Model¶
Class: YoloWorldModelBlockV1
Source: inference.core.workflows.core_steps.models.foundation.yolo_world.v1.YoloWorldModelBlockV1
Run YOLO-World, a zero-shot object detection model, on an image.
YOLO-World accepts one or more text classes you want to identify in an image. The model returns the location of objects that meet the specified class, if YOLO-World is able to identify objects of that class.
We recommend experimenting with YOLO-World to evaluate the model on your use case before using this block in production. For example on how to effectively prompt YOLO-World, refer to the Roboflow YOLO-World prompting guide.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/yolo_world_model@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
class_names |
List[str] |
One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects.. | ✅ |
version |
str |
Variant of YoloWorld model. | ✅ |
confidence |
float |
Confidence threshold for detections. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to YOLO-World Model
in version v1
.
- inputs:
Size Measurement
,LMM
,Roboflow Custom Metadata
,Buffer
,Image Convert Grayscale
,Absolute Static Crop
,Multi-Label Classification Model
,Relative Static Crop
,Line Counter Visualization
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Depth Estimation
,Llama 3.2 Vision
,Google Vision OCR
,Dynamic Zone
,Roboflow Dataset Upload
,Clip Comparison
,Perspective Correction
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Camera Calibration
,Dimension Collapse
,Slack Notification
,Stability AI Image Generation
,Trace Visualization
,Corner Visualization
,Image Threshold
,Blur Visualization
,Local File Sink
,CogVLM
,Stability AI Inpainting
,SIFT
,Circle Visualization
,OpenAI
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,VLM as Detector
,Roboflow Dataset Upload
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Image Slicer
,Clip Comparison
,Model Monitoring Inference Aggregator
,Mask Visualization
,Anthropic Claude
,Florence-2 Model
,Identify Outliers
,Dynamic Crop
,Detections Consensus
- outputs:
Size Measurement
,Detection Offset
,Roboflow Custom Metadata
,Path Deviation
,Florence-2 Model
,Distance Measurement
,Label Visualization
,Detections Classes Replacement
,Background Color Visualization
,Detections Stitch
,Byte Tracker
,Triangle Visualization
,Path Deviation
,Line Counter
,Detections Stabilizer
,Detections Transformation
,Byte Tracker
,Stitch OCR Detections
,Roboflow Dataset Upload
,Bounding Box Visualization
,Perspective Correction
,Ellipse Visualization
,Color Visualization
,Crop Visualization
,Dot Visualization
,Pixelate Visualization
,Detections Filter
,Model Comparison Visualization
,Detections Merge
,Velocity
,Overlap Filter
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Time in Zone
,Line Counter
,Time in Zone
,Trace Visualization
,Corner Visualization
,Blur Visualization
,Model Monitoring Inference Aggregator
,Florence-2 Model
,Circle Visualization
,Byte Tracker
,Dynamic Crop
,Detections Consensus
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
YOLO-World Model
in version v1
has.
Bindings
-
input
images
(image
): The image to infer on..class_names
(list_of_values
): One or more classes that you want YOLO-World to detect. The model accepts any string as an input, though does best with short descriptions of common objects..version
(string
): Variant of YoloWorld model.confidence
(float_zero_to_one
): Confidence threshold for detections.
-
output
predictions
(object_detection_prediction
): Prediction with detected bounding boxes in form of sv.Detections(...) object.
Example JSON definition of step YOLO-World Model
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/yolo_world_model@v1",
"images": "$inputs.image",
"class_names": [
"person",
"car",
"license plate"
],
"version": "v2-s",
"confidence": 0.005
}