Trace Visualization¶
Class: TraceVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.trace.v1.TraceVisualizationBlockV1
The TraceVisualization
block draws tracker results on an image using Supervision's sv.TraceAnnotator
.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/trace_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
position |
str |
The anchor position for placing the label.. | ✅ |
trace_length |
int |
Maximum number of historical tracked objects positions to display.. | ✅ |
thickness |
int |
Thickness of the track visualization line.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Trace Visualization
in version v1
.
- inputs:
Detection Offset
,Roboflow Custom Metadata
,LMM
,Size Measurement
,Image Convert Grayscale
,Buffer
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Distance Measurement
,Relative Static Crop
,Line Counter Visualization
,Detections Classes Replacement
,Gaze Detection
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Instance Segmentation Model
,Keypoint Detection Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Path Deviation
,Line Counter
,Detections Stabilizer
,Detections Transformation
,Byte Tracker
,Depth Estimation
,Google Vision OCR
,Roboflow Dataset Upload
,Dynamic Zone
,Llama 3.2 Vision
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Detections Filter
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Camera Calibration
,Instance Segmentation Model
,Slack Notification
,Dimension Collapse
,Stability AI Image Generation
,Detections Merge
,Time in Zone
,Trace Visualization
,Time in Zone
,Corner Visualization
,Line Counter
,Image Threshold
,Blur Visualization
,Local File Sink
,CogVLM
,Stability AI Inpainting
,Keypoint Detection Model
,SIFT
,Circle Visualization
,Overlap Filter
,JSON Parser
,OpenAI
,Moondream2
,Path Deviation
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Bounding Rectangle
,Detections Stitch
,Template Matching
,Byte Tracker
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,SIFT Comparison
,Pixel Color Count
,YOLO-World Model
,VLM as Detector
,Velocity
,Roboflow Dataset Upload
,Polygon Visualization
,Segment Anything 2 Model
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Image Slicer
,Model Monitoring Inference Aggregator
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Identify Outliers
,Anthropic Claude
,Florence-2 Model
,Byte Tracker
,Dynamic Crop
,Detections Consensus
- outputs:
LMM
,Buffer
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Relative Static Crop
,Line Counter Visualization
,Gaze Detection
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Multi-Label Classification Model
,Depth Estimation
,Google Vision OCR
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Dot Visualization
,Model Comparison Visualization
,Instance Segmentation Model
,Classification Label Visualization
,Camera Calibration
,Qwen2.5-VL
,Stability AI Image Generation
,Trace Visualization
,Time in Zone
,Corner Visualization
,Image Threshold
,Blur Visualization
,QR Code Detection
,CogVLM
,Stability AI Inpainting
,Keypoint Detection Model
,SIFT
,Circle Visualization
,OpenAI
,Moondream2
,Florence-2 Model
,Label Visualization
,Stitch Images
,Image Preprocessing
,Detections Stitch
,Template Matching
,Byte Tracker
,SmolVLM2
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Bounding Box Visualization
,CLIP Embedding Model
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Image Blur
,Color Visualization
,Barcode Detection
,Pixelate Visualization
,Single-Label Classification Model
,Pixel Color Count
,YOLO-World Model
,VLM as Detector
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,Image Slicer
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Trace Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(Union[instance_segmentation_prediction
,object_detection_prediction
,keypoint_detection_prediction
]): Model predictions to visualize..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..position
(string
): The anchor position for placing the label..trace_length
(integer
): Maximum number of historical tracked objects positions to display..thickness
(integer
): Thickness of the track visualization line..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Trace Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/trace_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.object_detection_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"position": "CENTER",
"trace_length": 30,
"thickness": 1
}