Classification Label Visualization¶
Class: ClassificationLabelVisualizationBlockV1
Visualizes classification predictions with customizable labels and positioning options. Perfect for creating clear, informative displays of model predictions!
How It Works¶
This visualization processes classification predictions by:
-
🎯 Analyzing predictions based on task type (single-label or multi-label)
-
📊 Organizing results by confidence score
-
🎨 Rendering labels with customizable positioning and styling
Parameters¶
-
task_type
: Specifies how to handle predictions. Available options:-
"single-label": Shows only the highest confidence prediction
-
"multi-label": Displays all predictions above threshold
-
-
text_position
: Controls label placement with 9 options:- Top: LEFT, CENTER, RIGHT
- Center: LEFT, CENTER, RIGHT
- Bottom: LEFT, CENTER, RIGHT
-
text
: Determines what information to display:- "Class": Only show class names
- "Confidence": Only show confidence scores
- "Class and Confidence": Show both
-
text_padding
: Controls spacing between labels and from image edges
Why Use This Visualization?¶
This is especially useful for:
-
🏷️ Creating clear, professional-looking prediction displays
-
📱 Supporting different UI layouts with flexible positioning
-
🎨 Customizing appearance for different use cases
-
📊 Showing prediction confidence in an intuitive way
Example Usage¶
Use this visualization after any classification model to display predictions in a clean, organized format. Perfect for both single predictions and multiple class probabilities.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/classification_label_visualization@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
color_palette |
str |
Select a color palette for the visualised elements.. | ✅ |
palette_size |
int |
Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes.. | ✅ |
custom_colors |
List[str] |
Define a list of custom colors for bounding boxes in HEX format.. | ✅ |
color_axis |
str |
Choose how bounding box colors are assigned.. | ✅ |
text |
str |
The data to display in the text labels.. | ✅ |
text_position |
str |
The anchor position for placing the label.. | ✅ |
text_color |
str |
Color of the text.. | ✅ |
text_scale |
float |
Scale of the text.. | ✅ |
text_thickness |
int |
Thickness of the text characters.. | ✅ |
text_padding |
int |
Padding around the text in pixels.. | ✅ |
border_radius |
int |
Radius of the label in pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Classification Label Visualization
in version v1
.
- inputs:
Size Measurement
,Roboflow Custom Metadata
,LMM
,Buffer
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Distance Measurement
,Relative Static Crop
,Line Counter Visualization
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Line Counter
,Multi-Label Classification Model
,Depth Estimation
,Google Vision OCR
,Roboflow Dataset Upload
,Dynamic Zone
,Llama 3.2 Vision
,Clip Comparison
,Perspective Correction
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Model Comparison Visualization
,Email Notification
,Classification Label Visualization
,Camera Calibration
,Dimension Collapse
,Slack Notification
,Stability AI Image Generation
,Trace Visualization
,Line Counter
,Corner Visualization
,Image Threshold
,Blur Visualization
,Local File Sink
,CogVLM
,Stability AI Inpainting
,SIFT
,Circle Visualization
,JSON Parser
,OpenAI
,Florence-2 Model
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Template Matching
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,Single-Label Classification Model
,SIFT Comparison
,Pixel Color Count
,VLM as Detector
,Roboflow Dataset Upload
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Image Slicer
,Model Monitoring Inference Aggregator
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Identify Outliers
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
,Detections Consensus
- outputs:
LMM
,Buffer
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Multi-Label Classification Model
,Relative Static Crop
,Line Counter Visualization
,Gaze Detection
,Background Color Visualization
,OCR Model
,Camera Focus
,Image Contours
,Image Slicer
,Reference Path Visualization
,Keypoint Detection Model
,Instance Segmentation Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Multi-Label Classification Model
,Depth Estimation
,Google Vision OCR
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Clip Comparison
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Dot Visualization
,Model Comparison Visualization
,Instance Segmentation Model
,Classification Label Visualization
,Camera Calibration
,Qwen2.5-VL
,Stability AI Image Generation
,Trace Visualization
,Time in Zone
,Corner Visualization
,Image Threshold
,Blur Visualization
,QR Code Detection
,CogVLM
,Stability AI Inpainting
,Keypoint Detection Model
,SIFT
,Circle Visualization
,OpenAI
,Moondream2
,Florence-2 Model
,Label Visualization
,Stitch Images
,Image Preprocessing
,Detections Stitch
,Template Matching
,Byte Tracker
,SmolVLM2
,Dominant Color
,Polygon Zone Visualization
,Keypoint Visualization
,LMM For Classification
,Bounding Box Visualization
,CLIP Embedding Model
,OpenAI
,Halo Visualization
,Google Gemini
,Ellipse Visualization
,Image Blur
,Color Visualization
,Barcode Detection
,Pixelate Visualization
,Single-Label Classification Model
,Pixel Color Count
,YOLO-World Model
,VLM as Detector
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Polygon Visualization
,Single-Label Classification Model
,VLM as Classifier
,Image Slicer
,Clip Comparison
,Mask Visualization
,VLM as Classifier
,Anthropic Claude
,Florence-2 Model
,Dynamic Crop
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Classification Label Visualization
in version v1
has.
Bindings
-
input
image
(image
): The image to visualize on..copy_image
(boolean
): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..predictions
(classification_prediction
): Classification predictions..color_palette
(string
): Select a color palette for the visualised elements..palette_size
(integer
): Specify the number of colors in the palette. This applies when using custom or Matplotlib palettes..custom_colors
(list_of_values
): Define a list of custom colors for bounding boxes in HEX format..color_axis
(string
): Choose how bounding box colors are assigned..text
(string
): The data to display in the text labels..text_position
(string
): The anchor position for placing the label..text_color
(string
): Color of the text..text_scale
(float
): Scale of the text..text_thickness
(integer
): Thickness of the text characters..text_padding
(integer
): Padding around the text in pixels..border_radius
(integer
): Radius of the label in pixels..
-
output
image
(image
): Image in workflows.
Example JSON definition of step Classification Label Visualization
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/classification_label_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"predictions": "$steps.classification_model.predictions",
"color_palette": "DEFAULT",
"palette_size": 10,
"custom_colors": [
"#FF0000",
"#00FF00",
"#0000FF"
],
"color_axis": "CLASS",
"text": "LABEL",
"text_position": "CENTER",
"text_color": "WHITE",
"text_scale": 1.0,
"text_thickness": 1,
"text_padding": 10,
"border_radius": 0
}