Polygon Zone Visualization¶
Class: PolygonZoneVisualizationBlockV1
Source: inference.core.workflows.core_steps.visualizations.polygon_zone.v1.PolygonZoneVisualizationBlockV1
The PolygonZoneVisualization block draws polygon zone
in an image with a specified color and opacity.
Please note: zones will be drawn on top of image passed to this block,
this block should be placed before other visualization blocks in the workflow.
Type identifier¶
Use the following identifier in step "type" field: roboflow_core/polygon_zone_visualization@v1to add the block as
as step in your workflow.
Properties¶
| Name | Type | Description | Refs |
|---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
copy_image |
bool |
Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations.. | ✅ |
zone |
List[Any] |
Polygon zones (one for each batch) in a format [[(x1, y1), (x2, y2), (x3, y3), ...], ...]; each zone must consist of more than 2 points. | ✅ |
color |
str |
Color of the zone.. | ✅ |
opacity |
float |
Transparency of the Mask overlay.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Polygon Zone Visualization in version v1.
- inputs:
Size Measurement,Absolute Static Crop,VLM as Detector,Relative Static Crop,JSON Parser,Keypoint Visualization,Clip Comparison,Object Detection Model,LMM For Classification,VLM as Classifier,Google Vision OCR,Slack Notification,Dimension Collapse,Trace Visualization,Color Visualization,Instance Segmentation Model,Polygon Zone Visualization,Camera Focus,Halo Visualization,Identify Changes,CSV Formatter,OCR Model,Camera Calibration,Dynamic Zone,VLM as Classifier,Triangle Visualization,Stability AI Inpainting,Image Threshold,Reference Path Visualization,Corner Visualization,Ellipse Visualization,OpenAI,Single-Label Classification Model,Morphological Transformation,Roboflow Custom Metadata,Grid Visualization,Image Preprocessing,CogVLM,Line Counter Visualization,OpenAI,SIFT Comparison,Florence-2 Model,Roboflow Dataset Upload,Stitch OCR Detections,Label Visualization,PTZ Tracking (ONVIF).md),Model Comparison Visualization,Multi-Label Classification Model,Roboflow Dataset Upload,OpenAI,Model Monitoring Inference Aggregator,Polygon Visualization,Llama 3.2 Vision,Icon Visualization,Local File Sink,Blur Visualization,Image Contours,Clip Comparison,Identify Outliers,VLM as Detector,Twilio SMS Notification,Bounding Box Visualization,SIFT,Classification Label Visualization,Background Color Visualization,Webhook Sink,Dynamic Crop,Dot Visualization,Pixelate Visualization,Detections Consensus,Email Notification,Buffer,Image Slicer,Stitch Images,Crop Visualization,Mask Visualization,SIFT Comparison,QR Code Generator,Depth Estimation,Image Slicer,Google Gemini,Perspective Correction,Image Convert Grayscale,Stability AI Image Generation,Keypoint Detection Model,EasyOCR,Contrast Equalization,Anthropic Claude,Image Blur,Circle Visualization,Stability AI Outpainting,LMM,Florence-2 Model - outputs:
Absolute Static Crop,VLM as Detector,Relative Static Crop,Keypoint Visualization,Clip Comparison,Object Detection Model,LMM For Classification,SmolVLM2,VLM as Classifier,Google Vision OCR,Seg Preview,Color Visualization,Trace Visualization,Instance Segmentation Model,Polygon Zone Visualization,Camera Focus,Halo Visualization,OCR Model,Camera Calibration,VLM as Classifier,Triangle Visualization,Single-Label Classification Model,Segment Anything 2 Model,Stability AI Inpainting,Image Threshold,Reference Path Visualization,Corner Visualization,Gaze Detection,Ellipse Visualization,OpenAI,Single-Label Classification Model,Morphological Transformation,Image Preprocessing,CogVLM,Line Counter Visualization,OpenAI,YOLO-World Model,Florence-2 Model,Roboflow Dataset Upload,Label Visualization,Model Comparison Visualization,Multi-Label Classification Model,Multi-Label Classification Model,Roboflow Dataset Upload,Template Matching,OpenAI,Polygon Visualization,Instance Segmentation Model,Detections Stabilizer,Llama 3.2 Vision,Icon Visualization,Time in Zone,Blur Visualization,Image Contours,Clip Comparison,VLM as Detector,Object Detection Model,Moondream2,Bounding Box Visualization,SIFT,Classification Label Visualization,Background Color Visualization,Dynamic Crop,Dot Visualization,Pixelate Visualization,Dominant Color,QR Code Detection,Byte Tracker,Buffer,CLIP Embedding Model,Image Slicer,Stitch Images,Crop Visualization,Qwen2.5-VL,Keypoint Detection Model,Perception Encoder Embedding Model,Mask Visualization,SIFT Comparison,Barcode Detection,Pixel Color Count,Depth Estimation,Google Gemini,Image Slicer,Perspective Correction,Keypoint Detection Model,Image Convert Grayscale,Stability AI Image Generation,EasyOCR,Contrast Equalization,Anthropic Claude,Image Blur,Circle Visualization,Stability AI Outpainting,LMM,Detections Stitch,Florence-2 Model
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Polygon Zone Visualization in version v1 has.
Bindings
-
input
image(image): The image to visualize on..copy_image(boolean): Enable this option to create a copy of the input image for visualization, preserving the original. Use this when stacking multiple visualizations..zone(list_of_values): Polygon zones (one for each batch) in a format [[(x1, y1), (x2, y2), (x3, y3), ...], ...]; each zone must consist of more than 2 points.color(string): Color of the zone..opacity(float_zero_to_one): Transparency of the Mask overlay..
-
output
image(image): Image in workflows.
Example JSON definition of step Polygon Zone Visualization in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/polygon_zone_visualization@v1",
"image": "$inputs.image",
"copy_image": true,
"zone": "$inputs.zones",
"color": "WHITE",
"opacity": 0.3
}