Gaze Detection¶
Class: GazeBlockV1
Source: inference.core.workflows.core_steps.models.foundation.gaze.v1.GazeBlockV1
Run L2CS Gaze detection model on faces in images.
This block can: 1. Detect faces in images and estimate their gaze direction 2. Estimate gaze direction on pre-cropped face images
The gaze direction is represented by yaw and pitch angles in degrees.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/gaze@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
do_run_face_detection |
bool |
Whether to run face detection. Set to False if input images are pre-cropped face images.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Gaze Detection
in version v1
.
- inputs:
Roboflow Custom Metadata
,Image Convert Grayscale
,VLM as Detector
,Absolute Static Crop
,Twilio SMS Notification
,Relative Static Crop
,Label Visualization
,Line Counter Visualization
,Background Color Visualization
,Stitch Images
,Camera Focus
,Image Contours
,Image Preprocessing
,Image Slicer
,Reference Path Visualization
,SIFT Comparison
,Triangle Visualization
,Grid Visualization
,Polygon Zone Visualization
,Keypoint Visualization
,Depth Estimation
,Roboflow Dataset Upload
,Dynamic Zone
,Bounding Box Visualization
,Image Blur
,Perspective Correction
,Halo Visualization
,Ellipse Visualization
,Color Visualization
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Pixelate Visualization
,Model Comparison Visualization
,Email Notification
,SIFT Comparison
,Classification Label Visualization
,Camera Calibration
,Slack Notification
,VLM as Detector
,Stability AI Image Generation
,Roboflow Dataset Upload
,Polygon Visualization
,Trace Visualization
,Corner Visualization
,Image Threshold
,Blur Visualization
,VLM as Classifier
,Local File Sink
,Image Slicer
,Model Monitoring Inference Aggregator
,Stability AI Inpainting
,Mask Visualization
,SIFT
,VLM as Classifier
,Identify Outliers
,Circle Visualization
,JSON Parser
,Dynamic Crop
,Detections Consensus
- outputs:
OpenAI
,Detection Offset
,Roboflow Custom Metadata
,Florence-2 Model
,Distance Measurement
,Label Visualization
,Detections Classes Replacement
,Line Counter Visualization
,Background Color Visualization
,Template Matching
,Byte Tracker
,Triangle Visualization
,Detections Transformation
,Keypoint Visualization
,Llama 3.2 Vision
,Roboflow Dataset Upload
,Dynamic Zone
,Bounding Box Visualization
,Google Gemini
,Ellipse Visualization
,Color Visualization
,Crop Visualization
,Webhook Sink
,Dot Visualization
,Pixelate Visualization
,Detections Filter
,Model Comparison Visualization
,Camera Calibration
,Detections Merge
,Velocity
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Trace Visualization
,Corner Visualization
,Blur Visualization
,Model Monitoring Inference Aggregator
,Anthropic Claude
,Florence-2 Model
,Circle Visualization
,Dynamic Crop
,Detections Consensus
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Gaze Detection
in version v1
has.
Bindings
-
input
-
output
face_predictions
(keypoint_detection_prediction
): Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object.yaw_degrees
(float
): Float value.pitch_degrees
(float
): Float value.
Example JSON definition of step Gaze Detection
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/gaze@v1",
"images": "$inputs.image",
"do_run_face_detection": "<block_does_not_provide_example>"
}