CSV Formatter¶
Class: CSVFormatterBlockV1
Source: inference.core.workflows.core_steps.formatters.csv.v1.CSVFormatterBlockV1
The CSV Formatter block prepares structured CSV content based on specified data configurations within a workflow. It allows users to:
-
choose which data appears as columns
-
apply operations to transform the data within the block
-
aggregate whole batch of data into single CSV document (see Data Aggregation section)
The generated CSV content can be used as input for other blocks, such as File Sink or Email Notifications.
Defining columns¶
Use columns_data
property to specify name of the columns and data sources. Defining UQL operations in
columns_operations
you can perform specific operation on each column.
Timestamp column
The block automatically adds timestamp
column and this column name is reserved and cannot be used.
The value of timestamp would be in the following format: 2024-10-18T14:09:57.622297+00:00
, values
are scaled to UTC time zone.
For example, the following definition
columns_data = {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names",
}
columns_operations = {
"predictions": [
{"type": "DetectionsPropertyExtract", "property_name": "class_name"}
],
}
Will generate CSV content:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
When applied on object detection predictions from a single image, assuming that $inputs.reference_class_names
holds a list of reference classes.
Data Aggregation¶
The block may take input from different blocks, hence its behavior may differ depending on context:
-
data
batch_size=1
: whenever single input is provided - block will provide the output as in the example above - CSV header will be placed in the first row, the second row will hold the data -
data
batch_size>1
: each datapoint will create one row in CSV document, but only the last batch element will be fed with the aggregated output, leaving other batch elements' outputs empty
When should I expect batch_size=1
?¶
You may expect batch_size=1
in the following scenarios:
-
CSV Formatter was connected to the output of block that only operates on one image and produces one prediction
-
CSV Formatter was connected to the output of block that aggregates data for whole batch and produces single non-empty output (which is exactly the characteristics of CSV Formatter itself)
When should I expect batch_size>1
?¶
You may expect batch_size=1
in the following scenarios:
- CSV Formatter was connected to the output of block that produces single prediction for single image, but batch of images were fed - then CSV Formatter will aggregate the CSV content and output it in the position of the last batch element:
--- input_batch[0] ----> ┌───────────────────────┐ ----> <Empty>
--- input_batch[1] ----> │ │ ----> <Empty>
... │ CSV Formatter │ ----> <Empty>
... │ │ ----> <Empty>
--- input_batch[n] ----> └───────────────────────┘ ----> {"csv_content": "..."}
Format of CSV document for batch_size>1
If the example presented above is applied for larger input batch sizes - the output document structure would be as follows:
timestamp,predictions,reference
"2024-10-16T11:15:15.336322+00:00","['a', 'b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.436322+00:00","['b', 'c']","['a', 'b']"
"2024-10-16T11:15:15.536322+00:00","['a', 'c']","['a', 'b']"
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/csv_formatter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
columns_data |
Dict[str, Union[bool, float, int, str]] |
References data to be used to construct each and every column. | ✅ |
columns_operations |
Dict[str, List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractFrameMetadata, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, TimestampToISOFormat, ToBoolean, ToNumber, ToString]]] |
UQL definitions of operations to be performed on defined data w.r.t. each column. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to CSV Formatter
in version v1
.
- inputs:
Halo Visualization
,Polygon Zone Visualization
,Color Visualization
,CSV Formatter
,Florence-2 Model
,Segment Anything 2 Model
,Roboflow Dataset Upload
,LMM For Classification
,Depth Estimation
,Perspective Correction
,Expression
,Slack Notification
,Grid Visualization
,Image Blur
,Email Notification
,Local File Sink
,Property Definition
,Dimension Collapse
,JSON Parser
,Detections Merge
,Instance Segmentation Model
,Object Detection Model
,Line Counter
,Multi-Label Classification Model
,Keypoint Visualization
,Single-Label Classification Model
,Roboflow Dataset Upload
,Ellipse Visualization
,Triangle Visualization
,Perception Encoder Embedding Model
,Dynamic Zone
,VLM as Detector
,Clip Comparison
,Detections Classes Replacement
,Template Matching
,Barcode Detection
,Path Deviation
,VLM as Classifier
,Stitch Images
,Moondream2
,Webhook Sink
,Pixelate Visualization
,SmolVLM2
,Image Threshold
,Corner Visualization
,Byte Tracker
,Cache Set
,Model Comparison Visualization
,Camera Calibration
,Qwen2.5-VL
,Stability AI Inpainting
,Trace Visualization
,Time in Zone
,Dominant Color
,Bounding Box Visualization
,Stability AI Outpainting
,Buffer
,Crop Visualization
,Detection Offset
,Keypoint Detection Model
,Single-Label Classification Model
,Byte Tracker
,Instance Segmentation Model
,Bounding Rectangle
,LMM
,OCR Model
,Background Color Visualization
,Polygon Visualization
,Multi-Label Classification Model
,Rate Limiter
,Label Visualization
,Clip Comparison
,Keypoint Detection Model
,QR Code Detection
,Relative Static Crop
,VLM as Classifier
,Stability AI Image Generation
,Circle Visualization
,Absolute Static Crop
,Twilio SMS Notification
,Google Gemini
,Detections Stitch
,Image Preprocessing
,Classification Label Visualization
,Florence-2 Model
,Cosine Similarity
,YOLO-World Model
,SIFT Comparison
,Reference Path Visualization
,Google Vision OCR
,SIFT
,Llama 3.2 Vision
,Environment Secrets Store
,Detections Filter
,CogVLM
,SIFT Comparison
,Gaze Detection
,Line Counter Visualization
,Velocity
,Dot Visualization
,Path Deviation
,Data Aggregator
,Mask Visualization
,Dynamic Crop
,Object Detection Model
,CLIP Embedding Model
,Distance Measurement
,Roboflow Custom Metadata
,Pixel Color Count
,First Non Empty Or Default
,OpenAI
,Detections Stabilizer
,Detections Consensus
,Blur Visualization
,Line Counter
,Time in Zone
,Camera Focus
,Image Slicer
,OpenAI
,Identify Changes
,Identify Outliers
,Stitch OCR Detections
,Anthropic Claude
,Continue If
,Overlap Filter
,PTZ Tracking (ONVIF)
.md),Size Measurement
,Detections Transformation
,OpenAI
,Cache Get
,Image Slicer
,Model Monitoring Inference Aggregator
,Byte Tracker
,Delta Filter
,VLM as Detector
,Image Convert Grayscale
,Image Contours
- outputs:
Halo Visualization
,Polygon Zone Visualization
,Label Visualization
,Color Visualization
,Clip Comparison
,Stability AI Image Generation
,Florence-2 Model
,Segment Anything 2 Model
,Circle Visualization
,Roboflow Dataset Upload
,LMM For Classification
,Perspective Correction
,Twilio SMS Notification
,Google Gemini
,Detections Stitch
,Slack Notification
,Image Preprocessing
,Image Blur
,Classification Label Visualization
,Email Notification
,Local File Sink
,Florence-2 Model
,YOLO-World Model
,Instance Segmentation Model
,Reference Path Visualization
,Google Vision OCR
,Llama 3.2 Vision
,Line Counter
,Keypoint Visualization
,CogVLM
,SIFT Comparison
,Roboflow Dataset Upload
,Ellipse Visualization
,Triangle Visualization
,Line Counter Visualization
,Perception Encoder Embedding Model
,Dot Visualization
,Detections Classes Replacement
,Path Deviation
,Path Deviation
,Mask Visualization
,Dynamic Crop
,CLIP Embedding Model
,Webhook Sink
,Image Threshold
,Corner Visualization
,Distance Measurement
,Roboflow Custom Metadata
,Pixel Color Count
,Cache Set
,OpenAI
,Model Comparison Visualization
,Stability AI Inpainting
,Line Counter
,Time in Zone
,OpenAI
,Trace Visualization
,Time in Zone
,Bounding Box Visualization
,Stability AI Outpainting
,Crop Visualization
,Anthropic Claude
,PTZ Tracking (ONVIF)
.md),Size Measurement
,OpenAI
,Cache Get
,Instance Segmentation Model
,Model Monitoring Inference Aggregator
,LMM
,Background Color Visualization
,Polygon Visualization
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
CSV Formatter
in version v1
has.
Bindings
Example JSON definition of step CSV Formatter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/csv_formatter@v1",
"columns_data": {
"predictions": "$steps.model.predictions",
"reference": "$inputs.reference_class_names"
},
"columns_operations": {
"predictions": [
{
"property_name": "class_name",
"type": "DetectionsPropertyExtract"
}
]
}
}