Distance Measurement¶
Class: DistanceMeasurementBlockV1
Source: inference.core.workflows.core_steps.classical_cv.distance_measurement.v1.DistanceMeasurementBlockV1
Calculate the distance between two bounding boxes on a 2D plane, leveraging a perpendicular camera view and either a reference object or a pixel-to-unit scaling ratio for precise measurements.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/distance_measurement@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
object_1_class_name |
str |
The class name of the first object.. | ❌ |
object_2_class_name |
str |
The class name of the second object.. | ❌ |
reference_axis |
str |
The axis along which the distance will be measured.. | ❌ |
calibration_method |
str |
Select how to calibrate the measurement of distance between objects.. | ❌ |
reference_object_class_name |
str |
The class name of the reference object.. | ✅ |
reference_width |
float |
Width of the reference object in centimeters. | ✅ |
reference_height |
float |
Height of the reference object in centimeters. | ✅ |
pixel_ratio |
float |
The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels.. | ✅ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Distance Measurement
in version v1
.
- inputs:
OpenAI
,Detection Offset
,Moondream2
,LMM
,Path Deviation
,Roboflow Custom Metadata
,Florence-2 Model
,VLM as Detector
,Multi-Label Classification Model
,Twilio SMS Notification
,Detections Classes Replacement
,Gaze Detection
,OCR Model
,Camera Focus
,Bounding Rectangle
,Detections Stitch
,Template Matching
,Instance Segmentation Model
,Byte Tracker
,Keypoint Detection Model
,Object Detection Model
,Path Deviation
,Line Counter
,Detections Stabilizer
,Detections Transformation
,Byte Tracker
,LMM For Classification
,Stitch OCR Detections
,Google Vision OCR
,Roboflow Dataset Upload
,Dynamic Zone
,Llama 3.2 Vision
,Clip Comparison
,Perspective Correction
,OpenAI
,Object Detection Model
,Google Gemini
,Webhook Sink
,Identify Changes
,Detections Filter
,Email Notification
,Instance Segmentation Model
,Slack Notification
,YOLO-World Model
,VLM as Detector
,Detections Merge
,Velocity
,Roboflow Dataset Upload
,Segment Anything 2 Model
,Time in Zone
,Time in Zone
,Single-Label Classification Model
,VLM as Classifier
,CSV Formatter
,Local File Sink
,Model Monitoring Inference Aggregator
,CogVLM
,Anthropic Claude
,Florence-2 Model
,Cosine Similarity
,Overlap Filter
,Byte Tracker
,Dynamic Crop
,Detections Consensus
- outputs:
Detection Offset
,Absolute Static Crop
,Line Counter Visualization
,Image Contours
,Image Slicer
,Reference Path Visualization
,Instance Segmentation Model
,Keypoint Detection Model
,SIFT Comparison
,Object Detection Model
,Triangle Visualization
,Detections Stabilizer
,Byte Tracker
,Dynamic Zone
,Perspective Correction
,Object Detection Model
,Crop Visualization
,Webhook Sink
,Identify Changes
,Dot Visualization
,Email Notification
,Classification Label Visualization
,Instance Segmentation Model
,Slack Notification
,Trace Visualization
,Corner Visualization
,Image Threshold
,Blur Visualization
,Keypoint Detection Model
,Circle Visualization
,Twilio SMS Notification
,Label Visualization
,Stitch Images
,Image Preprocessing
,Byte Tracker
,Grid Visualization
,Dominant Color
,Keypoint Visualization
,Stitch OCR Detections
,Bounding Box Visualization
,Image Blur
,Halo Visualization
,Ellipse Visualization
,Color Visualization
,Pixelate Visualization
,SIFT Comparison
,Pixel Color Count
,Polygon Visualization
,Image Slicer
,Mask Visualization
,Anthropic Claude
,Identify Outliers
,Byte Tracker
,Detections Consensus
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Distance Measurement
in version v1
has.
Bindings
-
input
predictions
(Union[instance_segmentation_prediction
,object_detection_prediction
]): The output of a detection model describing the bounding boxes that will be used to measure the objects..reference_object_class_name
(string
): The class name of the reference object..reference_width
(float
): Width of the reference object in centimeters.reference_height
(float
): Height of the reference object in centimeters.pixel_ratio
(float
): The pixel-to-centimeter ratio of the input image, i.e. 1 centimeter = 100 pixels..
-
output
Example JSON definition of step Distance Measurement
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/distance_measurement@v1",
"predictions": "$steps.model.predictions",
"object_1_class_name": "car",
"object_2_class_name": "person",
"reference_axis": "vertical",
"calibration_method": "<block_does_not_provide_example>",
"reference_object_class_name": "reference-object",
"reference_width": 2.5,
"reference_height": 2.5,
"pixel_ratio": 100
}