Detections Filter¶
Class: DetectionsFilterBlockV1
Source: inference.core.workflows.core_steps.transformations.detections_filter.v1.DetectionsFilterBlockV1
Conditionally filter out model predictions.
Type identifier¶
Use the following identifier in step "type"
field: roboflow_core/detections_filter@v1
to add the block as
as step in your workflow.
Properties¶
Name | Type | Description | Refs |
---|---|---|---|
name |
str |
Enter a unique identifier for this step.. | ❌ |
operations |
List[Union[ClassificationPropertyExtract, ConvertDictionaryToJSON, ConvertImageToBase64, ConvertImageToJPEG, DetectionsFilter, DetectionsOffset, DetectionsPropertyExtract, DetectionsRename, DetectionsSelection, DetectionsShift, DetectionsToDictionary, Divide, ExtractDetectionProperty, ExtractImageProperty, LookupTable, Multiply, NumberRound, NumericSequenceAggregate, PickDetectionsByParentClass, RandomNumber, SequenceAggregate, SequenceApply, SequenceElementsCount, SequenceLength, SequenceMap, SortDetections, StringMatches, StringSubSequence, StringToLowerCase, StringToUpperCase, ToBoolean, ToNumber, ToString]] |
Definition of filtering logic.. | ❌ |
The Refs column marks possibility to parametrise the property with dynamic values available
in workflow
runtime. See Bindings for more info.
Available Connections¶
Compatible Blocks
Check what blocks you can connect to Detections Filter
in version v1
.
- inputs:
Image Contours
,Image Convert Grayscale
,Google Vision OCR
,Grid Visualization
,Identify Changes
,SIFT Comparison
,Polygon Visualization
,LMM For Classification
,Size Measurement
,SIFT Comparison
,Dimension Collapse
,First Non Empty Or Default
,Circle Visualization
,Perspective Correction
,Blur Visualization
,JSON Parser
,Qwen2.5-VL
,YOLO-World Model
,Byte Tracker
,Object Detection Model
,Clip Comparison
,Stability AI Inpainting
,Camera Calibration
,Background Color Visualization
,Line Counter
,Local File Sink
,Twilio SMS Notification
,Rate Limiter
,Clip Comparison
,Property Definition
,Roboflow Custom Metadata
,Expression
,Bounding Box Visualization
,Byte Tracker
,VLM as Detector
,OpenAI
,Image Blur
,Gaze Detection
,Corner Visualization
,Stability AI Image Generation
,Cosine Similarity
,Object Detection Model
,Dynamic Crop
,Pixelate Visualization
,Trace Visualization
,Template Matching
,Multi-Label Classification Model
,Line Counter
,CLIP Embedding Model
,Environment Secrets Store
,Model Monitoring Inference Aggregator
,Absolute Static Crop
,Byte Tracker
,Llama 3.2 Vision
,Detections Classes Replacement
,Crop Visualization
,Triangle Visualization
,VLM as Classifier
,Ellipse Visualization
,Label Visualization
,Detections Stabilizer
,CogVLM
,Path Deviation
,OpenAI
,Dynamic Zone
,Model Comparison Visualization
,Detections Consensus
,Buffer
,Cache Set
,QR Code Detection
,Single-Label Classification Model
,Detection Offset
,Slack Notification
,Stitch OCR Detections
,Detections Stitch
,Camera Focus
,Line Counter Visualization
,Barcode Detection
,Detections Filter
,Instance Segmentation Model
,Pixel Color Count
,Relative Static Crop
,Velocity
,SIFT
,VLM as Detector
,Data Aggregator
,Classification Label Visualization
,Time in Zone
,Florence-2 Model
,Email Notification
,VLM as Classifier
,Single-Label Classification Model
,Time in Zone
,Polygon Zone Visualization
,Instance Segmentation Model
,Dot Visualization
,Color Visualization
,Path Deviation
,Halo Visualization
,Google Gemini
,Webhook Sink
,Image Threshold
,Keypoint Detection Model
,Bounding Rectangle
,LMM
,Segment Anything 2 Model
,Distance Measurement
,Delta Filter
,Florence-2 Model
,Cache Get
,CSV Formatter
,Mask Visualization
,Anthropic Claude
,OCR Model
,Multi-Label Classification Model
,Roboflow Dataset Upload
,Identify Outliers
,Detections Merge
,Image Slicer
,Continue If
,Dominant Color
,Image Slicer
,Keypoint Visualization
,Stitch Images
,Image Preprocessing
,Detections Transformation
,Keypoint Detection Model
,Roboflow Dataset Upload
,Reference Path Visualization
- outputs:
Detections Stabilizer
,Bounding Box Visualization
,Byte Tracker
,Path Deviation
,Color Visualization
,Dynamic Zone
,Path Deviation
,Halo Visualization
,Model Comparison Visualization
,Detections Consensus
,Polygon Visualization
,Corner Visualization
,Detection Offset
,Stitch OCR Detections
,Bounding Rectangle
,Detections Stitch
,Size Measurement
,Dynamic Crop
,Distance Measurement
,Segment Anything 2 Model
,Trace Visualization
,Pixelate Visualization
,Circle Visualization
,Detections Filter
,Florence-2 Model
,Perspective Correction
,Blur Visualization
,Mask Visualization
,Label Visualization
,Byte Tracker
,Roboflow Dataset Upload
,Velocity
,Stability AI Inpainting
,Background Color Visualization
,Line Counter
,Detections Merge
,Line Counter
,Time in Zone
,Detections Transformation
,Model Monitoring Inference Aggregator
,Florence-2 Model
,Byte Tracker
,Keypoint Visualization
,Crop Visualization
,Roboflow Custom Metadata
,Time in Zone
,Detections Classes Replacement
,Triangle Visualization
,Ellipse Visualization
,Dot Visualization
,Roboflow Dataset Upload
Input and Output Bindings¶
The available connections depend on its binding kinds. Check what binding kinds
Detections Filter
in version v1
has.
Bindings
-
input
predictions
(Union[instance_segmentation_prediction
,keypoint_detection_prediction
,object_detection_prediction
]): Model predictions to filter..operations_parameters
(*
): References to additional parameters that may be provided in runtime to parametrise operations.
-
output
predictions
(Union[object_detection_prediction
,instance_segmentation_prediction
,keypoint_detection_prediction
]): Prediction with detected bounding boxes in form of sv.Detections(...) object ifobject_detection_prediction
or Prediction with detected bounding boxes and segmentation masks in form of sv.Detections(...) object ifinstance_segmentation_prediction
or Prediction with detected bounding boxes and detected keypoints in form of sv.Detections(...) object ifkeypoint_detection_prediction
.
Example JSON definition of step Detections Filter
in version v1
{
"name": "<your_step_name_here>",
"type": "roboflow_core/detections_filter@v1",
"predictions": "$steps.object_detection_model.predictions",
"operations": [
{
"filter_operation": {
"statements": [
{
"comparator": {
"type": "in (Sequence)"
},
"left_operand": {
"operations": [
{
"property_name": "class_name",
"type": "ExtractDetectionProperty"
}
],
"type": "DynamicOperand"
},
"right_operand": {
"operand_name": "classes",
"type": "DynamicOperand"
},
"type": "BinaryStatement"
}
],
"type": "StatementGroup"
},
"type": "DetectionsFilter"
}
],
"operations_parameters": {
"classes": "$inputs.classes"
}
}